Skip to main content
Log in

Mitochondria from Dipodascus (Endomyces) magnusii and Yarrowia lipolytica yeasts did not undergo a Ca2+-dependent permeability transition even under anaerobic conditions

  • Published:
Journal of Bioenergetics and Biomembranes Aims and scope Submit manuscript

Abstract

In this study we used tightly-coupled mitochondria from Yarrowia lipolytica and Dipodascus (Endomyces) magnusii yeasts. The two yeast strains are good alternatives to Saccharomyces cerevisiae, being aerobes containing well-structured mitochondria (thus ensuring less structural limitation to observe their appreciable swelling) and fully competent respiratory chain with three invariantly functioning energy conservation points, including Complex I, that can be involved in induction of the canonical Ca2+/Pi-dependent mitochondrial permeability transition (mPTP pore) with an increased open probability when electron flux increases (Fontaine et al. J Biol Chem 273:25734–25740, 1998; Bernardi et al. FEBS J 273:2077–2099, 2006). High-amplitude swelling and collapse of the membrane potential were used as parameters for demonstrating pore opening. Previously (Kovaleva et al. J Bioenerg Biomembr 41:239–249, 2009; Kovaleva et al. Biochemistry (Moscow) 75:297–303, 2010) we have shown that mitochondria from Y. lipolytica and D. magnusii were very resistant to the Ca2+ overload combined with varying concentrations of Pi, palmitic acid, SH-reagents, carboxyatractyloside (an inhibitor of ADP/ATP translocator), as well as depletion of intramitochondrial adenine nucleotide pools, deenergization of mitochondria, and shifting to acidic pH values in the presence of high [Pi]. Here we subjected yeast mitochondria to other conditions known to induce an mPTP in animal and plant mitochondria, namely to Ca2+ overload under hypoxic conditions (anaerobiosis). We were unable to observe Ca2+-induced high permeability of the inner membrane of D. magnusii and Y. lipolytica yeast mitochondria under anaerobic conditions, thus suggesting that an mPTP-like pore, if it ever occurs in yeast mitochondria, is not coupled with the Ca2+ uptake. The results provide the first demonstration of ATP-dependent energization of yeast mitochondria under conditions of anaerobiosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Åkerman KE, Wikström MK (1976) FEBS Lett 68(2):191–197

    Article  Google Scholar 

  • Andreishcheva EN, Soares MIM, Zvyagilskaya RA (1997) Russian J Plant Physiol 44:657–664

    Google Scholar 

  • Bazhenova EN, Votyakova TV, Zvyagilskaya RA (1989) Doklady Acad Sci 309(2):481–483

    CAS  Google Scholar 

  • Bazhenova EN, Deryabina YI, Eriksson O, Zvyagilskaya RA, Saris N-EL (1998a) J Biol Chem 273:4372–4377

    Article  CAS  Google Scholar 

  • Bazhenova EN, Saris N-EL, Zvyagilskaya RA (1998b) Biochim Biophys Acta 1371:96–100

    Article  CAS  Google Scholar 

  • Bernardi P (1999) Physiol Rev 79(4):1127–1155

    CAS  Google Scholar 

  • Bernardi P, Scorrano L, Colonna R, Petronilli V, Di Lisa F (1999) Eur J Biochem 264(3):687–701

    Article  CAS  Google Scholar 

  • Bernardi P, Krauskopf A, Basso E, Petronilli V, Blachly-Dyson E, Di Lisa F, Forte MA (2006) FEBS J 273(10):2077–2099

    Article  CAS  Google Scholar 

  • Bradford MM (1976) Anal Biochem 72:248–254

    Article  CAS  Google Scholar 

  • Burbaev DSh, Blumenfeld LA, Zvyagilskaya RA (1983) Biofizika 28(2):292–297

    CAS  Google Scholar 

  • Castrejon V, Pena A, Uribe S (2002) J Bioenerg Biomembr 34:299–306

    Article  CAS  Google Scholar 

  • Chance B, Williams GR, Holmes WF, Higgins J (1955) J Biol Chem 217(1):439–451

    CAS  Google Scholar 

  • Chávez E, Meléndez E, Zazueta C, Reyes-Vivas H, Perales SG (1997) Biochem Mol Biol Int 41(5):961–968

    Google Scholar 

  • Colin J, Garibal J, Mignotte B, Guenal I (2009) Biochem Biophys Res Commun 379(4):939–943

    Article  CAS  Google Scholar 

  • Crompton M (1999) Biochem J 341(Pt 2):233–249

    Article  CAS  Google Scholar 

  • Cymerman IA, Chung I, Beckmann BM, Bujnicki JM, Meiss G (2008) Nucleic Acids Res 36(4):1369–1379

    Article  CAS  Google Scholar 

  • Deryabina YI, Zvyagilskaya RA (2000) Biochemistry (Moscow) 65(12):1352–1356

    Article  CAS  Google Scholar 

  • Deryabina YI, Bazhenova EN, Saris NE, Zvyagilskaya RA (2001) J Biol Chem 276(51):47801–47806

    CAS  Google Scholar 

  • Deryabina YI, Isakova EP, Shurubor EI, Zvyagilskaya RA (2004) Biochemistry (Moscow) 69(9):1025–1033

    Article  CAS  Google Scholar 

  • Di Lisa E, Bernardi P (1998) Mol Cell Biochem 184(1–2):379–391

    Article  CAS  Google Scholar 

  • Eisenberg T, Buttner S, Kroemer G (2007) Apoptosis 12(5):1011–1023

    Article  CAS  Google Scholar 

  • Fontaine E, Ichas F, Bernardi P (1998) J Biol Chem 273(40):25734–25740

    Article  CAS  Google Scholar 

  • Guerin B, Bunoust O, Rouqueys V, Rigoulet M (1994) J Biol Chem 269(41):25406–25410

    CAS  Google Scholar 

  • Gutierrez-Aguilar M, Perez-Vazquez V, Bunoust O, Manon S, Rigoulet M, Uribe S (2007) Biochim Biophys Acta 1767(10):1245–1251

    Article  CAS  Google Scholar 

  • Halestrap AP (2009) J Mol Cardiol 46(6):821–831

    Article  CAS  Google Scholar 

  • Holman JD, Hand SC (2009) J Exp Mar Bio Ecol 376(2):85–93

    Article  CAS  Google Scholar 

  • Kovaleva MV, Sukhanova EI, Trendeleva TA, Zyl'kova MV, Ural'skaya LA, Popova KM, Saris NE, Zvyagilskaya RA (2009) J Bioenerg Biomembr 41(3):239–249

    Article  CAS  Google Scholar 

  • Kovaleva MV, Sukhanova EI, Trendeleva TA, Popova KM, Zylkova MV, Uralskaya LA, Zvyagilskaya RA (2010) Biochemistry (Moscow) 75(3):297–303

    Article  CAS  Google Scholar 

  • Krasnikov BF, Kuzminova AE, Zorov DB (1997) FEBS Lett 419(1):137–140

    Article  CAS  Google Scholar 

  • Kuzminova AE, Zhuravlyova AV, Vyssokikh MYu, Zorova LD, Krasnikov BF, Zorov DB (1998) FEBS Lett 434(3):313–316

    Article  CAS  Google Scholar 

  • Lucken-Ardjomande S, Montessuit S, Martinou JC (2008) Cell Death Differ 15(5):929–937

    Article  CAS  Google Scholar 

  • Madeo F, Frolich E, Frohlich KU (1997) J Cell Biol 139(3):729–734

    Article  CAS  Google Scholar 

  • Manon S, Guerin M (1997) Biochim Biophys Acta 1318(3):317–321

    Article  CAS  Google Scholar 

  • Manon S, Guerin M (1998) Biochem Mol Biol Int 44(3):565–575

    CAS  Google Scholar 

  • Manon S, Roucou X, Guerin M, Rigoulet M, Guerin M (1998) J Bioenerg Biomembr 30(5):419–429

    Article  CAS  Google Scholar 

  • Menze MA, Hutchinson K, Laborde SM, Hand SC (2005) Am J Physiol Regul Integr Comp Physiol 289(1):R68–76

    Article  CAS  Google Scholar 

  • Perez-Vazquez V, Saavedra-Molina A, Uribe S (2003) J Bioenerg Biomembr 35(3):231–241

    Article  CAS  Google Scholar 

  • Prieto S, Bouillaud F, Ricquier D, Rial E (1992) Eur J Biochem 208(2):487–491

    Article  CAS  Google Scholar 

  • Prieto S, Bouillaud F, Rial E (1995) Biochem J 307(Pt 3):657–661

    CAS  Google Scholar 

  • Prieto S, Bouillaud F, Rial E (1996) Arch Biochem Biophys 334(1):43–49

    Article  CAS  Google Scholar 

  • Roucou X, Manon S, Guerin M (1997) Biochem Mol Biol Int 43(1):53–61

    CAS  Google Scholar 

  • Smardova J, Smarda J, Koptikova J (2005) Differention 73(6):261–277

    Article  CAS  Google Scholar 

  • Suleiman MS, Halestrap AP, Griffiths EJ (2001) Pharmacol Ther 89(1):29–46

    Article  CAS  Google Scholar 

  • Virolainen E, Blokhina O, Fagerstedt K (2002) Ann Bot 90(4):509–516

    Article  CAS  Google Scholar 

  • Votyakova TV, Bazhenova EN, Zvyagil'skaya RA (1990) FEBS Lett 261(1):139–141

    Article  CAS  Google Scholar 

  • Votyakova TV, Bazhenova EN, Zvyagil’skaya RA (1992) Biol Membrany 9:341–348

    CAS  Google Scholar 

  • Zoratti M, Szabò I (1995) Biochim Biophys Acta 1241(2):139–176

    Google Scholar 

  • Zvyagilskaya RA, Zelenshichikova VA, Uralskaya LA, Kotelnikova AV (1981) Biochemistry (Moscow) 46(1):3–10

    CAS  Google Scholar 

  • Zvyagilskaya RA, Leykin YuN, Kozhokaru NL, Kotelnikova AV (1983) Doklady Acad Sci 269(5):1238–1240

    CAS  Google Scholar 

  • Zvyagilskaya RA, Perlova NN, Stepanov SV, Burbaev DSh, Uralskaya LA, Kotelnikova AV (1988) Biochemistry (Moscow) 53(1):101–106

    CAS  Google Scholar 

  • Zvyagilskaya R, Andreishcheva E, Soares IMI, Khozin I, Berhe A, Persson BL (2001) J Basic Microbiol 41(5):283–303

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Renata Zvyagilskaya.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Trendeleva, T., Sukhanova, E., Ural’skaya, L. et al. Mitochondria from Dipodascus (Endomyces) magnusii and Yarrowia lipolytica yeasts did not undergo a Ca2+-dependent permeability transition even under anaerobic conditions. J Bioenerg Biomembr 43, 623–631 (2011). https://doi.org/10.1007/s10863-011-9402-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10863-011-9402-3

Keywords

Navigation