Skip to main content
Log in

Extensively sparse 13C labeling to simplify solid-state NMR 13C spectra of membrane proteins

  • Article
  • Published:
Journal of Biomolecular NMR Aims and scope Submit manuscript

Abstract

Solid-state Nuclear Magnetic Resonance (ssNMR) is an emerging technique to investigate the structures and dynamics of membrane proteins in an artificial or native membrane environment. However, the structural studies of proteins by ssNMR are usually prolonged or impeded by signal assignments, especially the assignments of signals for collection of distance restraints, because of serious overlapping of signals in 2D 13C–13C spectra. Sparse labeling of 13C spins is an effective approach to simplify the 13C spectra and facilitate the extractions of distance restraints. Here, we propose a new reverse labeling combination of six types of amino acid residues (Ile, Leu, Phe, Trp, Tyr and Lys), and show a clean reverse labeling effect on a model membrane protein E. coli aquaporin Z (AqpZ). We further combine this reverse labeling combination and alternate 13C–12C labeling, and demonstrate an enhanced dilution effect in 13C–13C spectra. In addition, the influences of reverse labeling on the labeling of the other types of residues are quantitatively analyzed in the two strategies (1, reverse labeling and 2, reverse labeling combining alternate 13C–12C labeling). The signal intensities of some other types of residues in 2D 13C–13C spectra are observed to be 20–50% weaker because of the unwanted reverse labeling. The extensively sparse 13C labeling proposed in this study is expected to be useful in the collection of distance restraints using 2D 13C–13C spectra of membrane proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Atreya HS (2012) Isotope labeling in biomolecular NMR preface. Adv Exp Med Biol 992:V

    Google Scholar 

  • Banigan JR et al (2013) Combination of 15 N reverse labeling and afterglow spectroscopy for assigning membrane protein spectra by magic-angle-spinning solid-state NMR: application to the multidrug resistance protein. EmrE J Biomol NMR 55:391–399

    Article  Google Scholar 

  • Bayro MJ et al (2010) High-resolution MAS NMR analysis of PI3-SH3 amyloid fibrils: backbone conformation and implications for protofilament assembly and structure. Biochemistry 49:7474–7484

    Article  Google Scholar 

  • Berger C et al (2013) Efficient isotopic tryptophan labeling of membrane proteins by an indole controlled process conduct. Biotechnol Bioeng 110:1681–1690

    Article  Google Scholar 

  • Castellani F et al (2002) Structure of a protein determined by solid-state magic-angle-spinning NMR spectroscopy. Nature 420:98–102

    Article  ADS  Google Scholar 

  • Crowhurst KA et al (2003) Aromatic and methyl NOES highlight hydrophobic clustering in the unfolded state of an SH3 domain. Biochemistry 42:8687–8695

    Article  Google Scholar 

  • Delaglio F et al (1995) NMRPipe: a multidimensional spectral processing system based on UNIX pipes. J Biomol NMR 6:277–293

    Article  Google Scholar 

  • Ding X et al (2020) De novo resonance assignment of the transmembrane domain of LR11/SorLA in E. Fcoli membranes. J Magn Reson 310:106639

    Article  Google Scholar 

  • Doležal M et al (2015) Resonance assignments of the myristoylated Y28F/Y67F mutant of the Mason-Pfizer monkey virus matrix protein. Biomol NMR Assign 9:229–233

    Article  Google Scholar 

  • Eddy MT et al (2013) Selectively dispersed isotope labeling for protein structure determination by magic angle spinning NMR. J Biomol NMR 57:129–139

    Article  Google Scholar 

  • Etzkorn M et al (2007) Secondary structure, dynamics, and topology of a seven-helix receptor in native membranes, studied by solid-state NMR spectroscopy. Angew Chem Int Ed Engl 46:459–462

    Article  Google Scholar 

  • Fan Y et al (2015) Isotope labeling of eukaryotic membrane proteins in yeast for solid-state NMR. Methods Enzymol 565:193–212

    Article  Google Scholar 

  • Fasshuber HK et al (2015) Specific C-13 labeling of leucine, valine and isoleucine methyl groups for unambiguous detection of long-range restraints in protein solid-state NMR studies. J Magn Reson 252:10–19

    Article  ADS  Google Scholar 

  • Heise H et al (2005) Molecular-level secondary structure, polymorphism, and dynamics of full-length alpha-synuclein fibrils studied by solid-state NMR. Proc Natl Acad Sci USA 102:15871–15876

    Article  ADS  Google Scholar 

  • Higman VA et al (2009) Assigning large proteins in the solid state: a MAS NMR resonance assignment strategy using selectively and extensively C-13-labelled proteins. J Biomol NMR 44:245–260

    Article  Google Scholar 

  • Hiller M et al (2008) [2,3-C-13]-labeling of aromatic residues-getting a head start in the magic-angle-spinning NMR assignment of membrane proteins. J Am Chem Soc 130:408

    Article  Google Scholar 

  • Hong M (1999) Determination of multiple phi-torsion angles in proteins by selective and extensive C-13 labeling and two-dimensional solid-state NMR. J Magn Reson 139:389–401

    Article  ADS  Google Scholar 

  • Hong M et al (1999) Selective and extensive 13C labeling of a membrane protein for solid-state NMR investigations. J Biomol NMR 14:71–74

    Article  Google Scholar 

  • Kang S-J et al (2018) Direct assignment of 13 C solid-state NMR signals of TF o F 1 ATP synthase subunit c-ring in lipid membranes and its implication for the ring structure. J Biomol NMR 70:53–65

    Article  Google Scholar 

  • Goddard TD et al SPARKY 3 University of California, San Francisco

  • Krishnarjuna B et al (2011) Amino acid selective unlabeling for sequence specific resonance assignments in proteins. J Biomol NMR 49:39–51

    Article  Google Scholar 

  • Kuboniwa H et al (1995) Solution structure of calcium-free calmodulin. Nat Struct Biol 2:768–776

    Article  Google Scholar 

  • Kunert B et al (2014) Efficient and stable reconstitution of the ABC transporter BmrA for solid-state NMR studies. Front Mol Biosci 1:5

    Article  Google Scholar 

  • Lacabanne D et al (2018) Selective labeling and unlabeling strategies in protein solid-state NMR spectroscopy. J Biomol NMR 71:141–150

    Article  Google Scholar 

  • Lacabanne D et al (2019) Flexible-to-rigid transition is central for substrate transport in the ABC transporter BmrA from Bacillus Subtilis. Commun Biol 2:149

    Article  Google Scholar 

  • LeMaster DM et al (1996) Dynamical mapping of E-coli thioredoxin via C-13 NMR relaxation analysis. J Am Chem Soc 118:9255–9264

    Article  Google Scholar 

  • Lin MT et al (2011) A rapid and robust method for selective isotope labeling of proteins. Methods 55:370–378

    Article  Google Scholar 

  • Lin MT et al (2015) Escherichia coli auxotroph host strains for amino acid-selective isotope labeling of recombinant proteins. Methods Enzymol 565:45–66

    Article  Google Scholar 

  • Loquet A et al (2010) Supramolecular interactions probed by C-13-C-13 solid-state NMR spectroscopy. J Am Chem Soc 132:15164–15166

    Article  Google Scholar 

  • Loquet A et al (2011) C-13 spin dilution for simplified and complete solid-state NMR resonance assignment of insoluble biological assemblies. J Am Chem Soc 133:4722–4725

    Article  Google Scholar 

  • Loquet A et al (2012) Atomic model of the type III secretion system needle. Nature 486:276

    Article  ADS  Google Scholar 

  • Lundstrom P et al (2007) Fractional C-13 enrichment of isolated carbons using [1-C-13]- or [2-C-13]-glucose facilitates the accurate measurement of dynamics at backbone C-alpha and side-chain methyl positions in proteins. J Biomol NMR 38:199–212

    Article  Google Scholar 

  • Marley J et al (2001) A method for efficient isotopic labeling of recombinant proteins. J Biomol NMR 20:71–75

    Article  Google Scholar 

  • Morcombe CR et al (2003) Chemical shift referencing in MAS solid state NMR. J Magn Reson 162:479–486

    Article  ADS  Google Scholar 

  • Prasanna C et al (2015) Amino acid selective unlabeling in protein NMR spectroscopy. Method Enzymol 565:167–189

    Article  Google Scholar 

  • Retel JS et al (2017) Structure of outer membrane protein G in lipid bilayers. Nat Commun 8:2073

    Article  ADS  Google Scholar 

  • Schneider R et al (2008) Solid-state NMR spectroscopy applied to a chimeric potassium channel in lipid bilayers. J Am Chem Soc 130:7427–7435

    Article  Google Scholar 

  • Shi L et al (2009a) Solid-state NMR study of proteorhodopsin in the lipid environment: secondary structure and dynamics. Biochem Biophys Acta 1788:2563–2574

    Article  Google Scholar 

  • Shi L et al (2009b) Three-dimensional solid-state NMR study of a seven-helical integral membrane proton pump-structural insights. J Mol Biol 386:1078–1093

    Article  Google Scholar 

  • Sperling LJ et al (2010) Assignment strategies for large proteins by magic-angle spinning NMR: the 21-kDa disulfide-bond-forming enzyme DsbA. J Mol Biol 399:268–282

    Article  Google Scholar 

  • Takegoshi K et al (2001) 13C–1H dipolar-assisted rotational resonance in magic-angle spinning NMR. Chem Phys Lett 344:631–637

    Article  ADS  Google Scholar 

  • Wang S et al (2013) Solid-state NMR spectroscopy structure determination of a lipid-embedded heptahelical membrane protein. Nat Methods 10:1007–1012

    Article  Google Scholar 

  • Wang SL et al (2014) Recent advances in magic angle spinning solid state NMR of membrane proteins. Prog Nucl Mag Res Spectrosc 82:1–26

    Article  Google Scholar 

  • Wang SL et al (2018) Application of paramagnetic relaxation enhancements to accelerate the acquisition of 2D and 3D solid-state NMR spectra of oriented membrane proteins. Methods 138:54–61

    Article  Google Scholar 

  • Weininger U et al (2014) Off-resonance rotating-frame relaxation dispersion experiment for C-13 in aromatic side chains using L-optimized TROSY-selection. J Biomol NMR 59:23–29

    Article  Google Scholar 

  • Weininger U et al (2012) (1)(3)C relaxation experiments for aromatic side chains employing longitudinal- and transverse-relaxation optimized NMR spectroscopy. J Biomol NMR 53:181–190

    Article  Google Scholar 

  • Wiegand T et al (2017) Solid-state NMR and EPR spectroscopy of Mn(2+) -substituted ATP-fueled protein engines. Angew Chem Int Ed Engl 56:3369–3373

    Article  Google Scholar 

  • Xie H et al (2018) Solid-state NMR chemical shift assignments of aquaporin Z in lipid bilayers. Biomol NMR Assign 12:323–328

    Article  Google Scholar 

  • Zhao Y et al (2018) Gating mechanism of aquaporin Z in synthetic bilayers and native membranes revealed by solid-state NMR spectroscopy. J Am Chem Soc 140:7885–7895

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the National Key R&D Program of China (Grant Nos. 2016YFA0501200 and 2017YFA0505400) and the National Natural Science Foundation of China (Grant Nos. 31600625, 21425523, 31770798, 21927801, 21991080, 21921004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Yang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2663 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tong, Q., Tan, H., Li, J. et al. Extensively sparse 13C labeling to simplify solid-state NMR 13C spectra of membrane proteins. J Biomol NMR 75, 245–254 (2021). https://doi.org/10.1007/s10858-021-00372-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10858-021-00372-y

Keywords

Navigation