Skip to main content
Log in

Label-free NMR-based dissociation kinetics determination

  • Article
  • Published:
Journal of Biomolecular NMR Aims and scope Submit manuscript

Abstract

Understanding the dissociation of molecules is the basis to modulate interactions of biomedical interest. Optimizing drugs for dissociation rates is found to be important for their efficacy, selectivity, and safety. Here, we show an application of the high-power relaxation dispersion (RD) method to the determination of the dissociation rates of weak binding ligands from receptors. The experiment probes proton RD on the ligand and, therefore, avoids the need for any isotopic labeling. The large ligand excess eases the detection significantly. Importantly, the use of large spin-lock fields allows the detection of faster dissociation rates than other relaxation approaches. Moreover, this experimental approach allows to access directly the off-rate of the binding process without the need for analyzing a series of samples with increasing ligand saturation. The validity of the method is shown with small molecule interactions using two macromolecules, bovine serum albumin and tubulin heterodimers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Agafonov RV, Wilson C, Otten R, Buosi V, Kern D (2014) Energetic dissection of Gleevec’s selectivity toward human tyrosine kinases. Nat Struct Mol Biol 21:848–853

    Article  Google Scholar 

  • Alberty RA, Hammes GG (1958) Application of the theory of diffusion-controlled reactions to enzyme kinetics. J Phys Chem 62:154–159

    Article  Google Scholar 

  • Andersen OA, Nathubhai A, Dixon MJ, Eggleston IM, van Aalten DM (2008) Structure-based dissection of the natural product cyclopentapeptide chitinase inhibitor argifin. Chem Biol 15:295–301

    Article  Google Scholar 

  • Ban D, Gossert AD, Giller K, Becker S, Griesinger C, Lee D (2012) Exceeding the limit of dynamics studies on biomolecules using high spin-lock field strengths with a cryogenically cooled probehead. J Magn Reson 221:1–4

    Article  ADS  Google Scholar 

  • Ban D, Sabo TM, Griesinger C, Lee D (2013) Measuring dynamic and kinetic information in the previously inaccessible supra-tc window of nanoseconds to microseconds by solution NMR spectroscopy. Molecules 18:11904–11937

    Article  Google Scholar 

  • Braunschweiler L, Ernst RR (1983) Coherence transfer by isotropic mixing: application to proton correlation spectroscopy. J Magn Reson (1969) 53:521–528

    Article  Google Scholar 

  • Canales A, Nieto L, Rodriguez-Salarichs J, Sanchez-Murcia PA, Coderch C, Cortes-Cabrera A, Paterson I, Carlomagno T, Gago F, Andreu JM, Altmann KH, Jimenez-Barbero J, Diaz JF (2014) Molecular recognition of epothilones by microtubules and tubulin dimers revealed by biochemical and NMR approaches. ACS Chem Biol 9:1033–1043

    Article  Google Scholar 

  • Carr HY, Purcell EM (1954) Effects of diffusion on free precession in nuclear magnetic resonance experiments. Phys Rev 94:630–638

    Article  ADS  Google Scholar 

  • Copeland RA (2016) The drug-target residence time model: a 10-year retrospective. Nat Rev Drug Discov 15:87–95

    Article  Google Scholar 

  • Copeland RA, Pompliano DL, Meek TD (2006) Drug-target residence time and its implications for lead optimization. Nat Rev Drug Discov 5:730–739

    Article  Google Scholar 

  • Dalvit C (2007) Ligand- and substrate-based 19F NMR screening: principles and applications to drug discovery. Progr Nucl Magn Reson Spectrosc 51:243–271

    Article  Google Scholar 

  • Davis DG, Perlman ME, London RE (1994) Direct measurements of the dissociation-rate constant for inhibitor-enzyme complexes via the T 1r and T 2 (CPMG) methods. J Magn Reson B 104:266–275

    Article  Google Scholar 

  • Delaglio F, Grzesiek S, Vuister GW, Zhu G, Pfeifer J, Bax A (1995) NMRPipe: a multidimensional spectral processing system based on UNIX pipes. J Biomol NMR 6:277–293

    Article  Google Scholar 

  • Desvaux H, Berthault P, Birlirakis N, Goldman M (1994) Off-resonance ROESY for the study of dynamic processes. J Magn Reson A 108:219–229

    Article  ADS  Google Scholar 

  • Desvaux H, Berthault P, Birlirakis N, Goldman M, Piotto M (1995) Improved versions of off-resonance ROESY. J Magn Reson A 113:47–52

    Article  ADS  Google Scholar 

  • Eichmuller C, Skrynnikov NR (2005) A new amide proton R 1r experiment permits accurate characterization of microsecond time-scale conformational exchange. J Biomol NMR 32:281–293

    Article  Google Scholar 

  • Eigen M, Hammes GG (2006) Elementary steps in enzyme reactions (as studied by relaxation spectrometry). In: Nord FF (ed) Advances in enzymology and related areas of molecular biology. Wiley, New York, pp 1–38

    Google Scholar 

  • Fielding L, Rutherford S, Fletcher D (2005) Determination of protein-ligand binding affinity by NMR: observations from serum albumin model systems. Magn Reson Chem 43:463–470

    Article  Google Scholar 

  • Furtig B, Nozinovic S, Reining A, Schwalbe H (2015) Multiple conformational states of riboswitches fine-tune gene regulation. Curr Opin Struct Biol 30:112–124

    Article  Google Scholar 

  • Guedich S, Puffer-Enders B, Baltzinger M, Hoffmann G, Da Veiga C, Jossinet F, Thore S, Bec G, Ennifar E, Burnouf D, Dumas P (2016) Quantitative and predictive model of kinetic regulation by E. coli TPP riboswitches. RNA Biol 13:373–390

    Article  Google Scholar 

  • Guo D, Mulder-Krieger T, IJzerman AP, Heitman LH (2012) Functional efficacy of adenosine A(2)A receptor agonists is positively correlated to their receptor residence time. Br J Pharmacol 166:1846–1859

    Article  Google Scholar 

  • Guo D, Heitman LH, IJzerman AP (2015) The role of target binding kinetics in drug discovery. ChemMedChem 10:1793–1796

    Article  Google Scholar 

  • Hajduk PJ (2006) Fragment-based drug design: how big is too big? J Med Chem 49:6972–6976

    Article  Google Scholar 

  • Hajduk PJ, Greer J (2007) A decade of fragment-based drug design: strategic advances and lessons learned. Nat Rev Drug Discov 6:211–219

    Article  Google Scholar 

  • Hothersall JD, Guo D, Sarda S, Sheppard RJ, Chen H, Keur W, Waring MJ, IJzerman AP, Hill SJ, Dale IL, Rawlins PB (2017) Structure-activity relationships of the sustained effects of adenosine A2A receptor agonists driven by slow dissociation kinetics. Mol Pharmacol 91:25–38

    Article  Google Scholar 

  • Ishima R (2014) CPMG relaxation dispersion. In: Livesay DR (ed) protein dynamics: methods and protocols. Humana Press, Totowa, pp 29–49

    Chapter  Google Scholar 

  • Ishima R, Torchia DA (2003) Extending the range of amide proton relaxation dispersion experiments in proteins using a constant-time relaxation-compensated CPMG approach. J Biomol NMR 25:243–248

    Article  Google Scholar 

  • Jones JA, Hodgkinson P, Barker AL, Hore PJ (1996) Optimal sampling strategies for the measurement of spin–spin relaxation times. J Magn Reson B 113:25–34

    Article  Google Scholar 

  • Keighley W (2011) The need for high throughput kinetics early in the drug discovery process. Drug Disc World Summer 2011:39–45

    Google Scholar 

  • Kleckner IR, Foster MP (2011) An introduction to NMR-based approaches for measuring protein dynamics. Biochim Biophys Acta 1814:942–968

    Article  Google Scholar 

  • Kozakov D, Hall DR, Jehle S, Luo L, Ochiana SO, Jones EV, Pollastri M, Allen KN, Whitty A, Vajda S (2015) Ligand deconstruction: why some fragment binding positions are conserved and others are not. Proc Natl Acad Sci USA 112:E2585-2594

    Article  ADS  Google Scholar 

  • Lin PC (2015) Assessment of chemical exchange in tryptophan-albumin solution through 19F multicomponent transverse relaxation dispersion analysis. J Biomol NMR 62:121–127

    Article  Google Scholar 

  • Lipton SA (2004) Turning down, but not off. Nature 428:473–473

    Article  ADS  Google Scholar 

  • Lu H, Tonge PJ (2010) Drug-target residence time: critical information for lead optimization. Curr Opin Chem Biol 14:467–474

    Article  Google Scholar 

  • Meiboom S, Gill D (1958) Modified spin echo method for measuring nuclear relaxation times. Rev Sci Instrum 29:688–691

    Article  ADS  Google Scholar 

  • Moschen T, Wunderlich CH, Spitzer R, Levic J, Micura R, Tollinger M, Kreutz C (2015) Ligand-detected relaxation dispersion NMR spectroscopy: dynamics of preQ1-RNA binding. Angew Chem Int Ed Engl 54:560–563

    Google Scholar 

  • Moschen T, Grutsch S, Juen MA, Wunderlich CH, Kreutz C, Tollinger M (2016) Measurement of ligand-target residence times by 1H relaxation dispersion NMR spectroscopy. J Med Chem 59:10788–10793

    Article  Google Scholar 

  • Namanja AT, Wang XJ, Xu B, Mercedes-Camacho AY, Wilson BD, Wilson KA, Etzkorn FA, Peng JW (2010) Toward flexibility-activity relationships by NMR spectroscopy: dynamics of Pin1 ligands. J Am Chem Soc 132:5607–5609

    Article  Google Scholar 

  • Neu A, Neu U, Fuchs AL, Schlager B, Sprangers R (2015) An excess of catalytically required motions inhibits the scavenger decapping enzyme. Nat Chem Biol 11:697–704

    Article  Google Scholar 

  • Ohlson S (2008) Designing transient binding drugs: a new concept for drug discovery. Drug Discov Today 13:433–439

    Article  Google Scholar 

  • Palmer AG III (2004) NMR characterization of the dynamics of biomacromolecules. Chem Rev 104:3623–3640

    Article  Google Scholar 

  • Pan AC, Borhani DW, Dror RO, Shaw DE (2013) Molecular determinants of drug-receptor binding kinetics. Drug Discov Today 18:667–673

    Article  Google Scholar 

  • Peng JW, Wilson BD, Namanja AT (2009) Mapping the dynamics of ligand reorganization via 13CH3 and 13CH2 relaxation dispersion at natural abundance. J Biomol NMR 45:171–183

    Article  Google Scholar 

  • Peuker S, Cukkemane A, Held M, Noe F, Kaupp UB, Seifert R (2013) Kinetics of ligand-receptor interaction reveals an induced-fit mode of binding in a cyclic nucleotide-activated protein. Biophys J 104:63–74

    Article  Google Scholar 

  • Seeman P (2014) Clozapine, a fast-off-D2 antipsychotic. ACS Chem Neurosci 5:24–29

    Article  Google Scholar 

  • Shimizu Y, Ishii T, Ogawa K, Sasaki S, Matsui H, Nakayama M (2015) Biochemical characterization of smoothened receptor antagonists by binding kinetics against drug-resistant mutant. Eur J Pharmacol 764:220–227

    Article  Google Scholar 

  • Smith CA, Ban D, Pratihar S, Giller K, Schwiegk C, de Groot BL, Becker S, Griesinger C, Lee D (2015) Population shuffling of protein conformations. Angew Chem Int Ed Engl 54:207–210

    Article  Google Scholar 

  • Sugase K, Dyson HJ, Wright PE (2007) Mechanism of coupled folding and binding of an intrinsically disordered protein. Nature 447:1021–1025

    Article  ADS  Google Scholar 

  • Swinney DC (2009) The role of binding kinetics in therapeutically useful drug action. Curr Opin Drug Discov Dev 12:31–39

    Google Scholar 

  • Tolkatchev D, Xu P, Ni F (2003) Probing the kinetic landscape of transient peptide-protein interactions by use of peptide 15N NMR relaxation dispersion spectroscopy: binding of an antithrombin peptide to human prothrombin. J Am Chem Soc 125:12432–12442

    Article  Google Scholar 

  • Tummino PJ, Copeland RA (2008) Residence time of receptor-ligand complexes and its effect on biological function. BioChemistry 47:5481–5492

    Article  Google Scholar 

  • Vauquelin G, Bostoen S, Vanderheyden P, Seeman P (2012) Clozapine, atypical antipsychotics, and the benefits of fast-off D2 dopamine receptor antagonism. Naunyn Schmiedebergs Arch Pharmacol 385:337–372

    Article  Google Scholar 

  • Vilums M, Zweemer AJ, Yu Z, de Vries H, Hillger JM, Wapenaar H, Bollen IA, Barmare F, Gross R, Clemens J, Krenitsky P, Brussee J, Stamos D, Saunders J, Heitman LH, Ijzerman AP (2013) Structure-kinetic relationships—an overlooked parameter in hit-to-lead optimization: a case of cyclopentylamines as chemokine receptor 2 antagonists. J Med Chem 56:7706–7714

    Article  Google Scholar 

  • Zintsmaster JS, Wilson BD, Peng JW (2008) Dynamics of ligand binding from 13C NMR relaxation dispersion at natural abundance. J Am Chem Soc 130:14060–14061

    Article  Google Scholar 

Download references

Funding

This work was supported by funds from the James Graham Brown Foundation, the National Center for Research Resources CoBRE (1P30GM106396), the Max Planck Society, and the EU (ERC Grant Agreement Number 233227 to C.G.). P.T.M. acknowledges the Humboldt Foundation for a postdoctoral research fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Donghan Lee.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1194 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Trigo-Mouriño, P., Griesinger, C. & Lee, D. Label-free NMR-based dissociation kinetics determination. J Biomol NMR 69, 229–235 (2017). https://doi.org/10.1007/s10858-017-0150-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10858-017-0150-5

Keywords

Navigation