Skip to main content
Log in

2H–13C correlation solid-state NMR for investigating dynamics and water accessibilities of proteins and carbohydrates

  • Article
  • Published:
Journal of Biomolecular NMR Aims and scope Submit manuscript

Abstract

Site-specific determination of molecular motion and water accessibility by indirect detection of 2H NMR spectra has advantages over dipolar-coupling based techniques due to the large quadrupolar couplings and the ensuing high angular resolution. Recently, a Rotor Echo Short Pulse IRrAdiaTION mediated cross polarization (RESPIRATIONCP) technique was developed, which allowed efficient transfer of 2H magnetization to 13C at moderate 2H radiofrequency field strengths available on most commercial MAS probes. In this work, we investigate the 2H–13C magnetization transfer characteristics of one-bond perdeuterated CD n spin systems and two-bond H/D exchanged C–(O)–D and C–(N)–D spin systems in carbohydrates and proteins. Our results show that multi-bond, broadband 2H–13C polarization transfer can be achieved using 2H radiofrequency fields of ~50 kHz, relatively short contact times of 1.3–1.7 ms, and with sufficiently high sensitivity to enable 2D 2H–13C correlation experiments with undistorted 2H spectra in the indirect dimension. To demonstrate the utility of this 2H–13C technique for studying molecular motion, we show 2H–13C correlation spectra of perdeuterated bacterial cellulose, whose surface glucan chains exhibit a motionally averaged C6 2H quadrupolar coupling that indicates fast trans-gauche isomerization about the C5–C6 bond. In comparison, the interior chains in the microfibril core are fully immobilized. Application of the 2H–13C correlation experiment to H/D exchanged Arabidopsis primary cell walls show that the O–D quadrupolar spectra of the highest polysaccharide peaks can be fit to a two-component model, in which 74% of the spectral intensity, assigned to cellulose, has a near-rigid-limit coupling, while 26% of the intensity, assigned to matrix polysaccharides, has a weakened coupling of 50 kHz. The latter O–D quadrupolar order parameter of 0.22 is significantly smaller than previously reported C–D dipolar order parameters of 0.46–0.55 for pectins, suggesting that additional motions exist at the C–O bonds in the wall polysaccharides. 2H–13C polarization transfer profiles are also compared between statistically deuterated and H/D exchanged GB1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Akbey Ü et al (2014) Quadruple-resonance magic-angle spinning nmr spectroscopy of deuterated solid proteins. Angew Chem Int Edit 53:2438–2442

    Article  Google Scholar 

  • Andreas LB, Le Marchand T, Jaudzems K, Pintacuda G (2015) High-resolution proton-detected NMR of proteins at very fast MAS. J Magn Reson 253:36–49

    Article  ADS  Google Scholar 

  • Atalla RH, VanderHart DL (1984) Native cellulose: a composite of two distinct crystalline forms. Science 223:283–285

    Article  ADS  Google Scholar 

  • Bali G, Foston MB, O’Neill HM, Evans BR, He J, Ragauskas AJ (2013) The effect of deuteration on the structure of bacterial cellulose. Carbohyd Res 374:82–88

    Article  Google Scholar 

  • Bennett AE, Rienstra CM, Auger M, Lakshmi KV, Griffin RG (1995) Heteronuclear decoupling in rotating solids. J Chem Phys 103:6951–6958

    Article  ADS  Google Scholar 

  • Burnett L, Muller B (1971) Deuteron quadrupole coupling constants in three solid deuterated paraffin hydrocarbons: C2D6, C4D10, C6D14. J Chem Phys 55:5829–5831

    Article  ADS  Google Scholar 

  • Clymer JW, Ragle JL (1982) Deuterium quadrupole coupling in methanol, salicyclic acid, catechol, resorcinol, and hydroquinone. J Chem Phys 77:4366–4373

    Article  ADS  Google Scholar 

  • Cobo MF, Achilles A, Reichert D, Deazevedo ER, Saalwächter K (2012) Recoupled separated-local-field experiments and applications to study intermediate-regime molecular motions. J Magn Reson 221:85–96

    Article  ADS  Google Scholar 

  • Dick-Perez M, Wang T, Salazar A, Zabotina OA, Hong M (2012) Multidimensional solid-state NMR studies of the structure and dynamics of pectic polysaccharides in uniformly 13C-labeled Arabidopsis primary cell walls. Magn Reson Chem 50:539–550

    Article  Google Scholar 

  • Dick-Pérez M, Zhang Y, Hayes J, Salazar A, Zabotina OA, Hong M (2011) Structure and Interactions of plant cell-wall polysaccharides by two- and three-dimensional magic-angle-spinning solid-state NMR. Biochem-US 50:989–1000

    Article  Google Scholar 

  • Earl WL, VanderHart DL (1981) Observations by high-resolution carbon-13 nuclear magnetic resonance of cellulose I related to morphology and crystal structure. Macromolecules 14:570–574

    Article  ADS  Google Scholar 

  • Franks WT et al (2005) Magic-angle spinning solid-state NMR spectroscopy of the β1 immunoglobulin binding domain of protein G (GB1): 15N and 13C chemical shift assignments and conformational analysis. J Am Chem Soc 127:12291–12305

    Article  Google Scholar 

  • Frey MH, Opella SJ (1984) 13C spin exchange in amino acids and peptides. J Am Chem Soc 106:4942–4945

    Article  Google Scholar 

  • Gallagher T, Alexander P, Bryan P, Gilliland GL (1994) Two crystal structures of the B1 immunoglobulin-binding domain of streptococcal protein G and comparison with NMR. BioChemistry 33:4721–4729

    Article  Google Scholar 

  • Gronenborn AM, Filpula DR, Essig NZ, Achari A, Whitlow M, Wingfield PT, Clore GM (1991) A novel, highly stable fold of the immunoglobulin binding domain of streptococcal protein G. Science 253:657–661

    Article  ADS  Google Scholar 

  • He J et al (2014) Controlled incorporation of deuterium into bacterial cellulose. Cellulose 21:927–936

    Article  Google Scholar 

  • Hologne M, Faelber K, Diehl A, Reif B (2005) Characterization of dynamics of perdeuterated proteins by MAS solid-state NMR. J Am Chem Soc 127:11208–11209

    Article  Google Scholar 

  • Hong M, Gross JD, Rienstra CM, Griffin RG, Kumashiro KK, Schmidt-Rohr K (1997) Coupling amplification in 2D MAS NMR and its application to torsion angle determination in peptides. J Magn Reson 129:85–92

    Article  ADS  Google Scholar 

  • Hou G, Byeon IJ, Ahn J, Gronenborn AM, Polenova T (2011) 1 H-13C/1 H-15N heteronuclear dipolar recoupling by R-symmetry sequences under fast magic angle spinning for dynamics analysis of biological and organic solids. J Am Chem Soc 133:18646–18655

    Article  Google Scholar 

  • Hoyland JR (1968) Ab initio bond-orbital calculations. I. Application to methane, ethane, propane, and propylene. J Am Chem Soc 90:2227–2232

    Article  Google Scholar 

  • Hunt MJ, MaCkay AL (1974) Deuterium and nitrogen pure quadrupole resonance in deuterated amino acids. J Magn Reson 15:402–414

    ADS  Google Scholar 

  • Jain S, Bjerring M, Nielsen NC (2012) Efficient and robust heteronuclear cross-polarization for high-speed-spinning biological solid-state NMR spectroscopy. J Phys Chem Lett 3:703–708

    Article  Google Scholar 

  • Jain SK et al (2014) Low-power polarization transfer between deuterons and spin-1/2 nuclei using adiabatic RESPIRATIONCP in solid-state NMR. Phys Chem Chem Phys 16:2827–2830

    Article  Google Scholar 

  • Kačuráková M, Smith AC, Gidley MJ, Wilson RH (2002) Molecular interactions in bacterial cellulose composites studied by 1D FT-IR and dynamic 2D FT-IR spectroscopy. Carbohyd Res 337:1145–1153

    Article  Google Scholar 

  • Komatsu T, Kikuchi J (2013) Selective signal detection in solid-state NMR using rotor-synchronized dipolar dephasing for the analysis of hemicellulose in lignocellulosic biomass. J Phys Chem Lett 4:2279–2283

    Article  Google Scholar 

  • Kono H, Numata Y (2006) Structural investigation of cellulose Ia and Ib by 2D RFDR NMR spectroscopy: determination of sequence of magnetically inequivalent d-glucose units along cellulose chain. Cellulose 13:317–326

    Article  Google Scholar 

  • Kono H, Yunoki S, Shikano T, Fujiwara M, Erata T, Takai M (2002) CP/MAS 13C NMR study of cellulose and cellulose derivatives. 1. Complete assignment of the CP/MAS 13C NMR spectrum of the native cellulose. J Am Chem Soc 124:7506–7511

    Article  Google Scholar 

  • Lesage A, Steuernagel S, Emsley L (1998) Carbon-13 spectral editing in solid-state NMR using heteronuclear scalar couplings. J Am Chem Soc 120:7095–7100

    Article  Google Scholar 

  • Liepinsh E, Otting G (1996) Proton exchange rates from amino acid side chains—implications for image contrast. Magn Reson Med 35:30–42

    Article  Google Scholar 

  • Lu X, Zhang H, Lu M, Vega AJ, Hou G, Polenova T (2016) Improving dipolar recoupling for site-specific structural and dynamics studies in biosolids NMR: windowed RN-symmetry sequences. Phys Chem Chem Phys 18:4035–4044

    Article  Google Scholar 

  • Mao JD, Schmidt-Rohr K (2004) Separation of aromatic-carbon C-13 NMR signals from di-oxygenated alkyl bands by a chemical-shift-anisotropy filter. Solid State Nucl Magn 26:36–45

    Article  Google Scholar 

  • Mao J-D, Schmidt-Rohr K (2005) Methylene spectral editing in solid-state 13C NMR by three-spin coherence selection. J Magn Reson 176:1–6

    Article  ADS  Google Scholar 

  • Massiot D et al. (2002) Modelling one- and two-dimensional solid-state NMR spectra. Mag Reson Chem 40:70–76

    Article  Google Scholar 

  • Masuda K, Adachi M, Hirai A, Yamamoto H, Kaji H, Horii F (2003) Solid-state 13C and 1H spin diffusion NMR analyses of the microfibril structure for bacterial cellulose. Solid State Nucl Mag Reson 23:198–212

    Article  Google Scholar 

  • Metz G, Wu XL, Smith SO (1994) Ramped-amplitude cross polarization in magic-angle-spinning NMR. J Magn Reson Series A 110:219–227

    Article  ADS  Google Scholar 

  • Morcombe CR, Zilm KW (2003) Chemical shift referencing in MAS solid state NMR. J Magn Reson 162:479–486

    Article  ADS  Google Scholar 

  • Munowitz M, Griffin R, Bodenhausen G, Huang T (1981) Two-dimensional rotational spin-echo nuclear magnetic resonance in solids: correlation of chemical shift and dipolar interactions. J Am Chem Soc 103:2529–2533

    Article  Google Scholar 

  • Nadaud PS, Helmus JJ, Höfer N, Jaroniec CP (2007) Long-range structural restraints in spin-labeled proteins probed by solid-state nuclear magnetic resonance spectroscopy. J Am Chem Soc 129:7502–7503

    Article  Google Scholar 

  • Nand D, Cukkemane A, Becker S, Baldus M (2012) Fractional deuteration applied to biomolecular solid-state NMR spectroscopy. J Biomol NMR 52:91–101

    Article  Google Scholar 

  • Nielsen NC, Bildso/e H, Jakobsen HJ, Levitt MH (1994) Double-quantum homonuclear rotary resonance: efficient dipolar recovery in magic-angle spinning nuclear magnetic resonance. J Chem Phys 101:1805–1812

    Article  ADS  Google Scholar 

  • Nishiyama Y, Langan P, Chanzy H (2002) Crystal structure and hydrogen-bonding system in cellulose Iβ from synchrotron X-ray and neutron fiber diffraction. J Am Chem Soc 124:9074–9082

    Article  Google Scholar 

  • Nishiyama Y, Sugiyama J, Chanzy H, Langan P (2003) Crystal structure and hydrogen bonding system in cellulose Iα from synchrotron X-ray and neutron fiber diffraction. J Am Chem Soc 125:14300–14306

    Article  Google Scholar 

  • O’Neill H et al (2015) Chapter six - production of bacterial cellulose with controlled deuterium–hydrogen substitution for neutron scattering studies. In: Zvi K (ed) Method Enzymol, vol 565. Academic Press, San Diego, pp 123–146

    Google Scholar 

  • Palmer AG, Williams J, McDermott A (1996) Nuclear magnetic resonance studies of biopolymer dynamics. J Phys Chem 100:13293–13310

    Article  Google Scholar 

  • Pines A, Gibby MG, Waugh JS (1972) Proton-Enhanced nuclear induction spectroscopy. A method for high resolution NMR of dilute spins in solids. J Chem Phys 56:1776–1777

    Article  ADS  Google Scholar 

  • Reif B (2012) Deuterated peptides and proteins: structure and dynamics studies by MAS solid-state NMR. Methods Mol Biol 831:279–301

    Article  Google Scholar 

  • Sanchis MJ, Carsí M, Gómez CM, Culebras M, Gonzales KN, Torres FG (2017) Monitoring molecular dynamics of bacterial cellulose composites reinforced with graphene oxide by carboxymethyl cellulose addition. Carbohyd Polym 157:353–360

    Article  Google Scholar 

  • Schmidt HL, Sperling LJ, Gao YG, Wylie BJ, Boettcher JM, Wilson SR, Rienstra CM (2007) Crystal polymorphism of protein GB1 examined by solid-state NMR spectroscopy and X-ray diffraction. J Phys Chem B 111:14362–14369

    Article  Google Scholar 

  • Schmidt-Rohr K, Mao JD (2002) Efficient CH-group selection and identification in C-13 solid-state NMR by dipolar DEPT and H-1 chemical-shift filtering. J Am Chem Soc 124:13938–13948

    Article  Google Scholar 

  • Schmidt-Rohr K, Spiess HW (1994) Multidimensional Solid-State NMR and Polymers. Series vol., 1st edn. Academic Press, San Diego

    Google Scholar 

  • Schmidt-Rohr K, Fritzsching KJ, Liao SY, Hong M (2012) Spectral editing of two-dimensional magic-angle-spinning solid-state NMR spectra for protein resonance assignment and structure determination. J Biomol NMR 54:343–353

    Article  Google Scholar 

  • Shi X, Rienstra CM (2016) Site-specific internal motions in GB1 protein microcrystals revealed by 3D 2H–13C–13C solid-state NMR spectroscopy. J Am Chem Soc 138:4105–4119

    Article  Google Scholar 

  • Wang T, Hong M (2016) Solid-state NMR investigations of cellulose structure and interactions with matrix polysaccharides in plant primary cell walls. J Exp Bot 67:503–514

    Article  Google Scholar 

  • Wang T, Zabotina OA, Miller RC, Hong M (2012) Pectin-cellulose interactions in arabidopsis primary cell wall from two-dimensional magic-angle-spinning solid-state NMR. BioChemistry 51:9846–9856

    Article  Google Scholar 

  • Wang T, Salazar A, Zabotina OA, Hong M (2014) Structure and dynamics of brachypodium primary cell wall polysaccharides from two-dimensional 13C solid-state nuclear magnetic resonance spectroscopy. Biochem-US 53:2840–2854

    Article  Google Scholar 

  • Wang T, Park YB, Cosgrove DJ, Hong M (2015) Cellulose-pectin spatial contacts are inherent to never-dried Arabidopsis primary cell walls: evidence from solid-state nuclear magnetic resonance. Plant Physiol 168:871–884

    Article  Google Scholar 

  • Wang T, Chen Y, Tabuchi A, Cosgrove DJ, Hong M (2016a) The target of β-expansin EXPB1 in maize cell walls from binding and solid-state NMR studies. Plant Physiol 172:2107–2119

    Article  Google Scholar 

  • Wang T, Phyo P, Hong M (2016b) Multidimensional solid-state NMR spectroscopy of plant cell walls. Solid State Nucl Mag 78:56–63

    Article  Google Scholar 

  • Wang T, Yang H, Kubicki JD, Hong M (2016c) Cellulose structural polymorphism in plant primary cell walls investigated by high-field 2D solid-state NMR spectroscopy and density functional theory calculations. Biomacromolecules 17:2210–2222

    Article  Google Scholar 

  • Wei D, Akbey Ü, Paaske B, Oschkinat H, Reif B, Bjerring M, Nielsen NC (2011) Optimal 2H rf Pulses and 2H–13C cross-polarization methods for solid-state 2H MAS NMR of perdeuterated proteins. J Phys Chem Lett 2:1289–1294

    Article  Google Scholar 

  • White PB, Wang T, Park YB, Cosgrove DJ, Hong M (2014) Water–polysaccharide interactions in the primary cell wall of Arabidopsis thaliana from polarization transfer solid-state NMR. J Am Chem Soc 136:10399–10409

    Article  Google Scholar 

  • Williams JK, Schmidt-Rohr K, Hong M (2015) Aromatic spectral editing techniques for magic-angle-spinning solid-state NMR spectroscopy of uniformly 13C-labeled proteins. Solid State Nucl Mag 72:118–126

    Article  Google Scholar 

  • Wu XL, Burns ST, Zilm KW (1994) Spectral editing in CPMAS NMR. Generating subspectra based on proton multiplicities. J Magn Reson Series A 111:29–36

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work is partially supported by NIH grant GM088204 to M. H. The plant cell wall and bacterial cellulose portion of the work was supported by the Center for Lignocellulose Structure and Formation, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Basic Energy Sciences under Award # DE-SC0001090.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mei Hong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gelenter, M.D., Wang, T., Liao, SY. et al. 2H–13C correlation solid-state NMR for investigating dynamics and water accessibilities of proteins and carbohydrates. J Biomol NMR 68, 257–270 (2017). https://doi.org/10.1007/s10858-017-0124-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10858-017-0124-7

Keywords

Navigation