Skip to main content

Advertisement

Log in

On the use of ultracentrifugal devices for routine sample preparation in biomolecular magic-angle-spinning NMR

  • Article
  • Published:
Journal of Biomolecular NMR Aims and scope Submit manuscript

Abstract

A number of recent advances in the field of magic-angle-spinning (MAS) solid-state NMR have enabled its application to a range of biological systems of ever increasing complexity. To retain biological relevance, these samples are increasingly studied in a hydrated state. At the same time, experimental feasibility requires the sample preparation process to attain a high sample concentration within the final MAS rotor. We discuss these considerations, and how they have led to a number of different approaches to MAS NMR sample preparation. We describe our experience of how custom-made (or commercially available) ultracentrifugal devices can facilitate a simple, fast and reliable sample preparation process. A number of groups have since adopted such tools, in some cases to prepare samples for sedimentation-style MAS NMR experiments. Here we argue for a more widespread adoption of their use for routine MAS NMR sample preparation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

[Adapted from (Mandal et al. 2015), Copyright 2015, with permission from Elsevier.] c TEM on [U–13C–15N]-labeled huntingtin exon 1 fibrils prepared for ssNMR. d 13C–13C CP DARR spectrum of 4.4 mg of htt exon1 fibrils measured at 275 K and 13 kHz MAS. Panels cd are adapted from (Hoop et al. 2016). e AFM on C18–(PEPAu M−ox)2 fibers. f 13C–13C CP DARR spectrum of 1.9 mg of C18–(PEPAu M−ox)2 peptide nanofibrils measured at 277 K. Panels ef are adapted with permission from (Merg et al. 2016). Copyright 2016 American Chemical Society. The NMR measurements were performed on 800 and 600 MHz (1H) spectrometer using 3.2 mm MAS rotors

Similar content being viewed by others

References

  • Abe M, Niibayashi R, Koubori S, Moriyama I, Miyoshi H (2011) Molecular mechanisms for the induction of peroxidase activity of the cytochrome c-cardiolipin complex. Biochemistry 50(39):8383–8391

    Article  Google Scholar 

  • Andreas LB, Le Marchand T, Jaudzems K, Pintacuda G (2015) High-resolution proton-detected NMR of proteins at very fast MAS. J Magn Reson 253:36–49

    Article  ADS  Google Scholar 

  • Andreas LB, Jaudzems K, Stanek J, Lalli D, Bertarello A, Le Marchand T, Cala-De Paepe D, Kotelovica S, Akopjana I, Knott B, Wegner S, Engelke F, Lesage A, Emsley L, Tars K, Herrmann T, Pintacuda G (2016) Structure of fully protonated proteins by proton-detected magic-angle spinning NMR. Proc Natl Acad Sci USA 113(33):9187–9192

    Article  Google Scholar 

  • Antzutkin ON, Balbach JJ, Leapman RD, Rizzo NW, Reed J, Tycko R (2000) Multiple quantum solid-state NMR indicates a parallel, not antiparallel, organization of β-sheets in Alzheimer’s β-amyloid fibrils. Proc Natl Acad Sci USA 97(24):13045–13050

    Article  ADS  Google Scholar 

  • Bajaj VS, Van der Wel PCA, Griffin RG (2009) Observation of a low-temperature, dynamically driven structural transition in a polypeptide by solid-state NMR spectroscopy. J Am Chem Soc 131(1):118–128

    Article  Google Scholar 

  • Ball P (2008) Water as an active constituent in cell biology. Chem Rev 108(1):74–108

    Article  Google Scholar 

  • Bell DJ, Heywood-Waddington D, Hoare M, Dunnill P (1982) The density of protein precipitates and its effect on centrifugal sedimentation. Biotechnol Bioeng 24(1):127–141

    Article  Google Scholar 

  • Bertini I, Luchinat C, Parigi G, Ravera E, Reif B, Turano P (2011) Solid-state NMR of proteins sedimented by ultracentrifugation. Proc Natl Acad Sci USA 108(26):10396–10399

    Article  ADS  Google Scholar 

  • Bertini I, Engelke F, Gonnelli L, Knott B, Luchinat C, Osen D, Ravera E (2012) On the use of ultracentrifugal devices for sedimented solute NMR. J Biomol NMR 54(2):123–127

    Article  Google Scholar 

  • Bertini I, Luchinat C, Parigi G, Ravera E (2013) SedNMR: on the edge between solution and solid-state NMR. Acc Chem Res 46(9):2059–2069

    Article  Google Scholar 

  • Böckmann A, Meier B (2014) Prions. Prion 4(2):72–79

    Article  Google Scholar 

  • Böckmann A, Gardiennet C, Verel R, Hunkeler A, Loquet A, Pintacuda G, Emsley L, Meier BH, Lesage A (2009) Characterization of different water pools in solid-state NMR protein samples. J Biomol NMR 45(3):319–327

    Article  Google Scholar 

  • Bryant G, Koster KL, Wolfe J (2001) Membrane behaviour in seeds and other systems at low water content: the various effects of solutes. Seed Sci Res 11:17–25

    Article  Google Scholar 

  • Cai H, Chen Y, Cui X, Cai S, Chen Z (2014) High-resolution 1H NMR spectroscopy of fish muscle, eggs and small whole fish via Hadamard-encoded intermolecular multiple-quantum coherence. PLoS ONE 9(1):e86422

    Article  ADS  Google Scholar 

  • Chimon S, Ishii Y (2005) Capturing intermediate structures of Alzheimer’s beta-amyloid, Abeta(1–40), by solid-state NMR spectroscopy. J Am Chem Soc 127(39):13472–13473

    Article  Google Scholar 

  • Chimon S, Shaibat MA, Jones CR, Calero DC, Aizezi B, Ishii Y (2007) Evidence of fibril-like β-sheet structures in a neurotoxic amyloid intermediate of Alzheimer’s β-amyloid. Nat Struct Mol Biol 14(12):1157–1164

    Article  Google Scholar 

  • Comellas G, Lemkau LR, Nieuwkoop AJ, Kloepper KD, Ladror DT, Ebisu R, Woods WS, Lipton AS, George JM, Rienstra CM (2011) Structured regions of alpha-synuclein fibrils include the early-onset parkinson’s disease mutation sites. J Mol Biol 411(4):881–895

    Article  Google Scholar 

  • Das N, Murray DT, Cross TA (2013) Lipid bilayer preparations of membrane proteins for oriented and magic-angle spinning solid-state NMR samples. Nat Protoc 8(11):2256–2270

    Article  Google Scholar 

  • Demers J-P, Chevelkov V, Lange A (2011) Progress in correlation spectroscopy at ultra-fast magic-angle spinning: basic building blocks and complex experiments for the study of protein structure and dynamics. Solid State Nucl Magn Reson 40(3):101–113

    Article  Google Scholar 

  • Demers J-P, Habenstein B, Loquet A, Vasa SK, Giller K, Becker S, Baker D, Lange A, Sgourakis NG (2014) High-resolution structure of the Shigella type-III secretion needle by solid-state NMR and cryo-electron microscopy. Nat Commun 5:1–12

    Article  Google Scholar 

  • Dillmann B, Elbayed K, Zeiger H, Weingertner M-C, Piotto M, Engelke F (2007) A novel low-E field coil to minimize heating of biological samples in solid-state multinuclear NMR experiments. J Magn Reson 187(1):10–18

    Article  ADS  Google Scholar 

  • Ferella L, Luchinat C, Ravera E, Rosato A (2013) SedNMR: a web tool for optimizing sedimentation of macromolecular solutes for SSNMR. J Biomol NMR 57(4):319–326

    Article  Google Scholar 

  • Fragai M, Luchinat C, Parigi G, Ravera E (2013) Practical considerations over spectral quality in solid state NMR spectroscopy of soluble proteins. J Biomol NMR 57(2):155–166

    Article  Google Scholar 

  • Gardiennet C, Schütz AK, Hunkeler A, Kunert B, Terradot L, Böckmann A, Meier BH (2012) A sedimented sample of a 59 kDa dodecameric helicase yields high-resolution solid-state NMR spectra. Angew Chem Int Ed 51(31):7855–7858

    Article  Google Scholar 

  • Gawrisch K, Gaede HC, Mihailescu M, White SH (2007) Hydration of POPC bilayers studied by 1H-PFG-MAS-NOESY and neutron diffraction. Eur Biophys J 36(4–5):281–291

    Article  Google Scholar 

  • Gelis I, Vitzthum V, Dhimole N, Caporini MA, Schedlbauer A, Carnevale D, Connell SR, Fucini P, Bodenhausen G (2013) Solid-state NMR enhanced by dynamic nuclear polarization as a novel tool for ribosome structural biology. J Biomol NMR 56(2):85–93

    Article  Google Scholar 

  • Goldbourt A (2013) Biomolecular magic-angle spinning solid-state NMR: recent methods and applications. Curr Opin Biotechnol 24(4):705–715

    Article  Google Scholar 

  • Gregory RB, Gangoda M, Gilpin RK, Su W (1993) The influence of hydration on the conformation of bovine serum albumin studied by solid-state 13C-NMR spectroscopy. Biopolymers 33(12):1871–1876

    Article  Google Scholar 

  • Han Y, Ahn J, Concel J, Byeon I-JL, Gronenborn AM, Yang J, Polenova T (2010) Solid-state NMR studies of HIV-1 capsid protein assemblies. J Am Chem Soc 132(6):1976–1987

    Article  Google Scholar 

  • Higman VA, Flinders J, Hiller M, Jehle S, Markovic S, Fiedler S, van Rossum B-J, Oschkinat H (2009) Assigning large proteins in the solid state: a MAS NMR resonance assignment strategy using selectively and extensively 13C-labelled proteins. J Biomol NMR 44(4):245–260

    Article  Google Scholar 

  • Hisao GS, Harland MA, Brown RA, Berthold DA, Wilson TE, Rienstra CM (2016) An efficient method and device for transfer of semisolid materials into solid-state NMR spectroscopy rotors. J Magn Reson 265:172–176

    Article  ADS  Google Scholar 

  • Hoop CL, Sivanandam VN, Kodali R, Srnec MN, Van der Wel PCA (2012) Structural characterization of the caveolin scaffolding domain in association with cholesterol-rich membranes. Biochemistry 51(1):90–99

    Article  Google Scholar 

  • Hoop CL, Lin H-K, Kar K, Hou Z, Poirier MA, Wetzel R, Van der Wel PCA (2014) Polyglutamine amyloid core boundaries and flanking domain dynamics in huntingtin fragment fibrils determined by solid-state nuclear magnetic resonance. Biochemistry 53(42):6653–6666

    Article  Google Scholar 

  • Hoop CL, Lin H-K, Kar K, Magyarfalvi G, Lamley JM, Boatz JC, Mandal A, Lewandowski JR, Wetzel R, Van der Wel PCA (2016) Huntingtin exon 1 fibrils feature an interdigitated β-hairpin-based polyglutamine core. Proc Natl Acad Sci USA 113(6):1546–1551

    Article  ADS  Google Scholar 

  • Igumenova TI, McDermott AE, Zilm KW, Martin RW, Paulson EK, Wand AJ (2004) Assignments of carbon NMR resonances for microcrystalline ubiquitin. J Am Chem Soc 126(21):6720–6727

    Article  Google Scholar 

  • Jakeman DL, Mitchell DJ, Shuttleworth WA, Evans JN (1998) Effects of sample preparation conditions on biomolecular solid-state NMR lineshapes. J Biomol NMR 12(3):417–421

    Article  Google Scholar 

  • Kennedy SD, Bryant RG (1990) Structural effects of hydration: studies of lysozyme by 13C solids NMR. Biopolymers 29(14):1801–1806

    Article  Google Scholar 

  • Khodadadi S, Roh JH, Kisliuk A, Mamontov E, Tyagi M, Woodson SA, Briber RM, Sokolov AP (2010) Dynamics of biological macromolecules: not a simple slaving by hydration water. Biophys J 98(7):1321–1326

    Article  Google Scholar 

  • Kloepper KD, Hartman KL, Ladror DT, Rienstra CM (2007) Solid-state NMR spectroscopy reveals that water is nonessential to the core structure of alpha-synuclein fibrils. J Phys Chem B 111(47):13353–13356

    Article  Google Scholar 

  • Knight MJ, Felli IC, Pierattelli R, Emsley L, Pintacuda G (2013) Magic angle spinning NMR of paramagnetic proteins. Acc Chem Res 46(9):2108–2116

    Article  Google Scholar 

  • Krushelnitsky A, Gogolev Y, Golbik R, Dahlquist F, Reichert D (2006) Comparison of the internal dynamics of globular proteins in the microcrystalline and rehydrated lyophilized states. Biochim Biophys Acta Proteins Proteomics 1764(10):1639–1645

    Article  Google Scholar 

  • Kunert B, Gardiennet C, Lacabanne D, Calles-Garcia D, Falson P, Jault J-M, Meier BH, Penin F, Böckmann A (2014) Efficient and stable reconstitution of the ABC transporter BmrA for solid-state NMR studies. Front Mol Biosci 1:5

    Article  Google Scholar 

  • Lamley JM, Iuga D, Öster C, Sass H-J, Rogowski M, Oss A, Past J, Reinhold A, Grzesiek S, Samoson A, Lewandowski JR (2014) Solid-state NMR of a protein in a precipitated complex with a full-length antibody. J Am Chem Soc 136(48):16800–16806

    Article  Google Scholar 

  • LeBarron J, London E (2016) Effect of lipid composition and amino acid sequence upon transmembrane peptide-accelerated lipid transleaflet diffusion (flip-flop). Biochim Biophys Acta 1858(8):1812–1820

    Article  Google Scholar 

  • Li J, Van der Wel PCA (2013) Spinning-rate encoded chemical shift correlations from rotational resonance solid-state NMR experiments. J Magn Reson 230:117–124

    Article  ADS  Google Scholar 

  • Li J, Hoop CL, Kodali R, Sivanandam VN, Van der Wel PCA (2011) Amyloid-like fibrils from a domain-swapping protein feature a parallel, in-register conformation without native-like interactions. J Biol Chem 286(33):28988–28995

    Article  Google Scholar 

  • Linden AH, Franks WT, Akbey Ü, Lange S, van Rossum B-J, Oschkinat H (2011) Cryogenic temperature effects and resolution upon slow cooling of protein preparations in solid state NMR. J Biomol NMR 51(3):283–292

    Article  Google Scholar 

  • Loquet A, Giller K, Becker S, Lange A (2010) Supramolecular interactions probed by 13C–13C solid-state NMR spectroscopy. J Am Chem Soc 132(43):15164–15166

    Article  Google Scholar 

  • Loquet A, Habenstein B, Lange A (2013) Structural investigations of molecular machines by solid-state NMR. Acc Chem Res 46(9):2070–2079

    Article  Google Scholar 

  • Luchinat C, Parigi G, Ravera E (2013) Water and protein dynamics in sedimented systems: a relaxometric investigation. ChemPhysChem 14(13):3156–3161

    Article  Google Scholar 

  • Mainz A, Jehle S, van Rossum BJ, Oschkinat H, Reif B (2009) Large protein complexes with extreme rotational correlation times investigated in solution by magic-angle-spinning NMR spectroscopy. J Am Chem Soc 131(44):15968–15969

    Article  Google Scholar 

  • Mandal A, Van der Wel PCA (2016) MAS 1H NMR probes freezing point depression of water and liquid-gel phase transitions in liposomes. Biophys J 111(9):1965–1973

    Article  Google Scholar 

  • Mandal A, Hoop CL, DeLucia M, Kodali R, Kagan VE, Ahn J, Van der Wel PCA (2015) Structural changes and proapoptotic peroxidase activity of cardiolipin—bound mitochondrial cytochrome c. Biophys J 109(9):1873–1884

    Article  Google Scholar 

  • Martin RW, Zilm KW (2003) Preparation of protein nanocrystals and their characterization by solid state NMR. J Magn Reson 165(1):162–174

    Article  ADS  Google Scholar 

  • McNeill SA, Gor’kov PL, Shetty K, Brey WW, Long JR (2009) A low-E magic angle spinning probe for biological solid state NMR at 750 MHz. J Magn Reson 197(2):135–144

    Article  ADS  Google Scholar 

  • Mehler M, Eckert CE, Busche A, Kulhei J, Michaelis J, Becker-Baldus J, Wachtveitl J, Dötsch V, Glaubitz C (2015) Assembling a correctly folded and functional heptahelical membrane protein by protein trans-splicing. J Biol Chem 290(46):27712–27722

    Google Scholar 

  • Merg AD, Boatz JC, Mandal A, Zhao G, Mokashi-Punekar S, Liu C, Wang X, Zhang P, Van der Wel PCA, Rosi NL (2016) Peptide-directed assembly of single-helical gold nanoparticle superstructures exhibiting intense chiroptical activity. J Am Chem Soc 138(41):13655–13663

    Article  Google Scholar 

  • New RRC (1994) Influence of liposome characteristics on their properties and fate. In: Philippot JR, Schuber F (eds) Liposomes as tools in basic research and industry. CRC Press, Boca Raton, FL, pp 3–20

    Google Scholar 

  • Pauli J, van Rossum B, Förster H, de Groot HJM, Oschkinat H (2000) Sample optimization and identification of signal patterns of amino acid side chains in 2D RFDR spectra of the α-spectrin SH3 domain. J Magn Reson Ser A 143(2):411–416

    Article  ADS  Google Scholar 

  • Petkova AT, Ishii Y, Balbach JJ, Antzutkin ON, Leapman RD, Delaglio F, Tycko R (2002) A structural model for Alzheimer’s β-amyloid fibrils based on experimental constraints from solid state NMR. Proc Natl Acad Sci USA 99(26):16742–16747

    Article  ADS  Google Scholar 

  • Pöppler A-C, Demers J-P, Malon M, Singh AP, Roesky HW, Nishiyama Y, Lange A (2016) Ultrafast magic-angle spinning: benefits for the acquisition of ultrawide-line NMR spectra of heavy spin-1/2 nuclei. ChemPhysChem 17(6):812–816

    Article  Google Scholar 

  • Porcelli F, Ramamoorthy A, Barany G, Veglia G (2013) On the role of NMR spectroscopy for characterization of antimicrobial peptides. Methods Mol Biol 1063:159–180

    Article  Google Scholar 

  • Quinn CM, Lu M, Suiter CL, Hou G, Zhang H, Polenova T (2015) Magic angle spinning NMR of viruses. Prog Nucl Magn Reson Spectrosc 86–87:21–40

    Article  Google Scholar 

  • Ravera E (2015) The bigger they are, the harder they fall: a topical review on sedimented solutes for solid-state NMR. Concepts Magn Reson 43 (6):209–227.

    Article  Google Scholar 

  • Ravera E, Schubeis T, Martelli T, Fragai M, Parigi G, Luchinat C (2015) NMR of sedimented, fibrillized, silica-entrapped and microcrystalline (metallo)proteins. J Magn Reson 253:60–70

    Article  ADS  Google Scholar 

  • Ravera E, Ciambellotti S, Cerofolini L, Martelli T, Kozyreva T, Bernacchioni C, Giuntini S, Fragai M, Turano P, Luchinat C (2016) Solid-state NMR of PEGylated proteins. Angew Chem 128 (7):2492–2495.

    Article  Google Scholar 

  • Renault M, Shintu L, Piotto M, Caldarelli S (2013) Slow-spinning low-sideband HR-MAS NMR spectroscopy: delicate analysis of biological samples. Sci Rep 3:3349

    Article  ADS  Google Scholar 

  • Sarkar R, Mainz A, Busi B, Barbet-Massin E, Kranz M, Hofmann T, Reif B (2016) Immobilization of soluble protein complexes in MAS solid-state NMR: sedimentation versus viscosity. Solid State Nucl Magn Reson 76–77:7–14

    Article  Google Scholar 

  • Scalise M, Pochini L, Giangregorio N, Tonazzi A, Indiveri C (2013) Proteoliposomes as tool for assaying membrane transporter functions and interactions with xenobiotics. Pharmaceutics 5(3):472–497

    Article  Google Scholar 

  • Schirò G, Fichou Y, Gallat F-X, Wood K, Gabel F, Moulin M, Härtlein M, Heyden M, Colletier J-P, Orecchini A, Paciaroni A, Wuttke J, Tobias DJ, Weik M (2015) Translational diffusion of hydration water correlates with functional motions in folded and intrinsically disordered proteins. Nat Commun 6:6490

    Article  ADS  Google Scholar 

  • Schmidt HLF, Shah GJ, Sperling LJ, Rienstra CM (2010) NMR determination of protein pK(a) values in the solid state. J Phys Chem Lett 1(10):1623–1628

    Article  Google Scholar 

  • Schubeis T, Nagaraj M, Ritter C (2017) Segmental isotope labeling of insoluble proteins for solid-state NMR by protein trans-splicing. Methods Mol Biol 1495(10):147–160

    Article  Google Scholar 

  • Seidel K, Etzkorn M, Heise H, Becker S, Baldus M (2005) High-Resolution Solid-State NMR Studies on Uniformly [13C15N-Labeled Ubiquitin. ChemBioChem 6(9):1638–1647

    Article  Google Scholar 

  • Sharma A, Sharma US (1997) Liposomes in drug delivery: progress and limitations. Int J Pharm 154(2):123–140

    Article  Google Scholar 

  • Sharpe S, Yau W-M, Tycko R (2006) Structure and dynamics of the HIV-1 Vpu transmembrane domain revealed by solid-state NMR with magic-angle spinning. Biochemistry 45(3):918–933

    Article  Google Scholar 

  • Siemer AB, Huang K-Y, McDermott AE (2012) Protein linewidth and solvent dynamics in frozen solution NMR. PLoS ONE 7(10):e47242

    Article  ADS  Google Scholar 

  • Sivanandam VN, Jayaraman M, Hoop CL, Kodali R, Wetzel R, Van der Wel PCA (2011) The aggregation-enhancing huntingtin N-terminus is helical in amyloid fibrils. J Am Chem Soc 133(12):4558–4566

    Article  Google Scholar 

  • Stepanyants N, Macdonald PJ, Francy CA, Mears JA, Qi X, Ramachandran R (2015) Cardiolipin’s propensity for phase transition and its reorganization by dynamin-related protein 1 form a basis for mitochondrial membrane fission. Mol Biol Cell 26(17):3104–3116

    Article  Google Scholar 

  • Straus SK (2004) Recent developments in solid-state magic-angle spinning, nuclear magnetic resonance of fully and significantly isotopically labelled peptides and proteins. Philos Trans R Soc Lond, B, Biol Sci 359 (1446):997–1008

    Article  Google Scholar 

  • Tang H, Belton PS, Ng A, Ryden P (1999) 13C MAS NMR Studies of the effects of hydration on the cell walls of potatoes and chinese water chestnuts. J Agric Food Chem 47(2):510–517

    Article  Google Scholar 

  • Tortorella D, London E (1994) Method for efficient pelleting of small unilamellar model membrane vesicles. Anal Biochem 217(2):176–180

    Article  Google Scholar 

  • Tortorella D, Ulbrandt ND, London E (1993) Simple centrifugation method for efficient pelleting of both small and large unilamellar vesicles that allows convenient measurement of protein binding. Biochemistry 32(35):9181–9188

    Article  Google Scholar 

  • Tuttle MD, Courtney JM, Barclay AM, Rienstra CM (2016) Preparation of amyloid fibrils for magic-angle spinning solid-state NMR spectroscopy. Methods Mol Biol 1345:173–183

    Article  Google Scholar 

  • Ulrich AS, Watts A (1994) Molecular response of the lipid headgroup to bilayer hydration monitored by 2H-NMR. Biophys J 66(5):1441–1449

    Article  Google Scholar 

  • Van Melckebeke H, Schanda P, Gath J, Wasmer C, Verel R, Lange A, Meier BH, Böckmann A (2011) Probing water accessibility in HET-s(218–289) amyloid fibrils by solid-state NMR. J Mol Biol 405(3):765–772

    Article  Google Scholar 

  • Van der Wel PCA, Lewandowski JR, Griffin RG (2007) Solid-state NMR study of amyloid nanocrystals and fibrils formed by the peptide GNNQQNY from yeast prion protein Sup35p. J Am Chem Soc 129(16):5117–5130

    Article  Google Scholar 

  • Van der Wel PCA, Lewandowski JR, Griffin RG (2010) Structural characterization of GNNQQNY amyloid fibrils by magic angle spinning NMR. Biochemistry 49(44):9457–9469

    Article  Google Scholar 

  • Verel R, Tomka IT, Bertozzi C, Cadalbert R, Kammerer RA, Steinmetz MO, Meier BH (2008) Polymorphism in an amyloid-like fibril-forming model peptide. Angew Chem Int Ed 47(31):5842–5845

    Article  Google Scholar 

  • Veshaguri S, Christensen SM, Kemmer GC, Ghale G, Møller MP, Lohr C, Christensen AL, Justesen BH, Jørgensen IL, Schiller J, Hatzakis NS, Grabe M, Pomorski TG, Stamou D (2016) Direct observation of proton pumping by a eukaryotic P-type ATPase. Science 351(6280):1469–1473

    Article  ADS  Google Scholar 

  • Vilar M, Chou H-T, Lührs T, Maji SK, Riek-Loher D, Verel R, Manning G, Stahlberg H, Riek R (2008) The fold of alpha-synuclein fibrils. Proc Natl Acad Sci USA 105(25):8637–8642

    Article  ADS  Google Scholar 

  • Wang S, Ladizhansky V (2014) Recent advances in magic angle spinning solid state NMR of membrane proteins. Prog Nucl Magn Reson Spectrosc 82:1–26

    Article  Google Scholar 

  • Weingarth M, Baldus M (2013) Solid-state NMR-based approaches for supramolecular structure elucidation. Acc Chem Res 46(9):2037–2046

    Article  Google Scholar 

  • White ET, Tan WH, Ang JM, Tait S, Litster JD (2007) The density of a protein crystal. Powder Technol 179(1–2):55–58

    Article  Google Scholar 

  • Wickramasinghe A, Wang S, Matsuda I, Nishiyama Y, Nemoto T, Endo Y, Ishii Y (2015) Evolution of CPMAS under fast magic-angle-spinning at 100 kHz and beyond. Solid State Nucl Magn Reson 72:9–16

    Article  Google Scholar 

  • Wiegand T, Gardiennet C, Ravotti F, Bazin A, Kunert B, Lacabanne D, Cadalbert R, Güntert P, Terradot L, Böckmann A, Meier BH (2015) Solid-state NMR sequential assignments of the N-terminal domain of HpDnaB helicase. Biomol NMR Assign 10(1):13–23

    Article  Google Scholar 

  • Wiegand T, Cadalbert R, Gardiennet C, Timmins J, Terradot L, Böckmann A, Meier BH (2016a) Monitoring ssDNA binding to the DnaB helicase from helicobacter pylori by solid-state NMR spectroscopy. Angew Chem Int Ed 55(45):14164–14168

    Article  Google Scholar 

  • Wiegand T, Gardiennet C, Cadalbert R, Lacabanne D, Kunert B, Terradot L, Böckmann A, Meier BH (2016b) Variability and conservation of structural domains in divide-and-conquer approaches. J Biomol NMR 65(2):79–86

    Article  Google Scholar 

  • Wolfe J, Bryant G (1999) Freezing, drying, and/or vitrification of membrane-solute-water systems. Cryobiology 39(2):103–129

    Article  Google Scholar 

  • Zhang Z, Chen Y, Tang X, Li J, Wang L, Yang J (2014) Solid-state NMR shows that dynamically different domains of membrane proteins have different hydration dependence. J Phys Chem B 118(32):9553–9564

    Article  Google Scholar 

  • Zhang H, Hou G, Lu M, Ahn J, Byeon I-JL, Langmead CJ, Perilla JR, Hung I, Gor’kov PL, Gan Z, Brey WW, Case DA, Schulten K, Gronenborn AM, Polenova T (2016) HIV-1 capsid function is regulated by dynamics: quantitative atomic-resolution insights by integrating magic-angle-spinning NMR, QM/MM, and MD. J Am Chem Soc 138(42):14066–14075

    Article  Google Scholar 

  • Zschörnig O, Paasche G, Thieme C, Korb N, Arnold K (2005) Modulation of lysozyme charge influences interaction with phospholipid vesicles. Colloids Surf B 42(1):69–78

    Article  Google Scholar 

Download references

Acknowledgements

We thank Mike Delk for his help with the NMR experiments. Funding support was from the University of Pittsburgh and the National Institutes of Health grants R01GM112678 and R01GM113908 (P.v.d.W.), and T32 GM088119 (J.C.B.).

Author contributions

TW and PvdW designed the packing tool. TW fabricated the packing tool. AM prepared samples. AM packed samples. AM and JCB performed MAS NMR experiments. JCB performed transmission electron microscopy measurements. AM and PvdW wrote the manuscript. All authors have read and edited the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick C. A. van der Wel.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 1881 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mandal, A., Boatz, J.C., Wheeler, T.B. et al. On the use of ultracentrifugal devices for routine sample preparation in biomolecular magic-angle-spinning NMR. J Biomol NMR 67, 165–178 (2017). https://doi.org/10.1007/s10858-017-0089-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10858-017-0089-6

Keywords

Navigation