Skip to main content
Log in

Long-chain flavodoxin FldB from Escherichia coli

  • NMR structure note
  • Published:
Journal of Biomolecular NMR Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

References

  • Alagaratnam S, van Pouderoyen G, Pijning T, Dijkstra BW, Cavazzini D, Rossi GL, Van Dongen WM, van Mierlo CP, van Berkel WJ, Canters GW (2005) A crystallographic study of Cys69Ala flavodoxin II from Azotobacter vinelandii: structural determinants of redox potential. Protein Sci 14:2284–2295

    Article  Google Scholar 

  • Barbato G, Ikura M, Kay LE, Pastor RW, Bax A (1992) Backbone dynamics of calmodulin studied by N-15 relaxation using inverse detected 2-dimensional NMR-spectroscopy—the central helix is flexible. Biochemistry 31:5269–5278

    Article  Google Scholar 

  • Barsukov I, Modi S, Lian LY, Sze KH, Paine MJ, Wolf CR, Roberts GC (1997) 1H, 15N and 13C NMR resonance assignment, secondary structure and global fold of the FMN-binding domain of human cytochrome P450 reductase. J Biomol NMR 10:63–75

    Article  Google Scholar 

  • Chen K, Tjandra N (2011) Water proton spin saturation affects measured protein backbone 15N spin relaxation rates. J Magn Reson 213:151–157

    Article  ADS  Google Scholar 

  • Clore GM, Szabo A, Bax A, Kay LE, Driscoll PC, Gronenborn AM (1990) Deviations from the simple two-parameter model-free approach to the interpretation of N-15 nuclear magnetic-relaxation of proteins. J Am Chem Soc 112:4989–4991

    Article  Google Scholar 

  • Cornilescu G, Delaglio F, Bax A (1999) Protein backbone angle restraints from searching a database for chemical shift and sequence homology. J Biomol NMR 13:289–302

    Article  Google Scholar 

  • Delaglio F, Grzesiek S, Vuister GW, Zhu G, Pfeifer J, Bax A (1995) NMRPipe—a multidimensional spectral processing system based on Unix pipes. J Biomol NMR 6:277–293

    Article  Google Scholar 

  • Edmondson DE, Tollin G (1971) Chemical and physical characterization of the Shethna flavoprotein and apoprotein and kinetics and thermodynamics of flavin analog binding to the apoprotein. Biochemistry 10:124–132

    Article  Google Scholar 

  • Farrow NA, Muhandiram R, Singer AU, Pascal SM, Kay CM, Gish G, Shoelson SE, Pawson T, Forman-Kay JD, Kay LE (1994) Backbone dynamics of a free and phosphopeptide-complexed Src homology 2 domain studied by 15N NMR relaxation. Biochemistry 33:5984–6003

    Article  Google Scholar 

  • Fushman D, Cahill S, Cowburn D (1997) The main-chain dynamics of the dynamin pleckstrin homology (PH) domain in solution: analysis of 15N relaxation with monomer/dimer equilibration. J Mol Biol 266:173–194

    Article  Google Scholar 

  • Gaudu P, Weiss B (2000) Flavodoxin mutants of Escherichia coli K-12. J Bacteriol 182:1788–1793

    Article  Google Scholar 

  • Güntert P (2004) Automated NMR structure calculation with CYANA. Methods Mol Biol 278:353–378

    Google Scholar 

  • Hoover DM, Ludwig ML (1997) A flavodoxin that is required for enzyme activation: the structure of oxidized flavodoxin from Escherichia coli at 1.8 Å resolution. Protein Sci 6:2525–2537

    Article  Google Scholar 

  • Hrovat A, Blumel M, Lohr F, Mayhew SG, Ruterjans H (1997) Backbone dynamics of oxidized and reduced D. vulgaris flavodoxin in solution. J Biomol NMR 10:53–62

    Article  Google Scholar 

  • Hu Y, Li Y, Zhang X, Guo X, Xia B, Jin C (2006) Solution structures and backbone dynamics of a flavodoxin MioC from Escherichia coli in both apo- and holo-forms: implications for cofactor binding and electron transfer. J Biol Chem 281:35454–35466

    Article  Google Scholar 

  • Johnson BA, Blevins RA (1994) NMRView: a computer program for the visualization and analysis of NMR data. J Biomol NMR 4:603–614

    Article  Google Scholar 

  • Knight EJ, Hardy RW (1967) Flavodoxin. Chemical and biological properties. J Biol Chem 7:1370–1374

    Google Scholar 

  • Lipari G, Szabo A (1982a) Model-free approach to the interpretation of nuclear magnetic resonance relaxation in macromolecules. 1. Theory and range of validity. J Am Chem Soc 104:4546–4559

    Article  Google Scholar 

  • Lipari G, Szabo A (1982b) Model-free approach to the interpretation of nuclear magnetic resonance relaxation in macromolecules. 2. Analysis of experimental results. J Am Chem Soc 104:4559–4570

    Article  Google Scholar 

  • López-Llano J, Maldonado S, Bueno M, Lostao A, Angeles-Jiménez M, Lillo MP, Sancho J (2004a) The long and short flavodoxins: I. the role of the differentiating loop in apoflavodoxin structure and FMN binding. J Biol Chem 45:47177–47183

    Article  Google Scholar 

  • López-Llano J, Maldonado S, Jain S, Lostao A, Godoy-Ruiz R, Sanchez-Ruiz JM, Cortijo M, Fernández-Recio J, Sancho J (2004b) The long and short flavodoxins: II. the role of the differentiating loop in apoflavodoxin stability and folding mechanism. J Biol Chem 45:47184–47191

    Article  Google Scholar 

  • Markley LJ, Horsley WJ, Klein MP (1971) Spin-lattice relaxation measurements in slowly relaxing complex spectra. J Chem Phys 55:3604–3605

    Article  ADS  Google Scholar 

  • Marley J, Lu M, Bracken C (2001) A method for efficient isotopic labeling of recombinant proteins. J Biomol NMR 20:71–75

    Article  Google Scholar 

  • McCarthy AA, Walsh MA, Verma CS, O’Connell DP, Reinhold M, Yalloway GN, D’Arcy D, Higgins TM, Voordouw G, Mayhew SG (2002) Crystallographic investigation of the role of aspartate 95 in the modulation of the redox potentials of Desulfovibrio vulgaris flavodoxin. Biochemistry 41:10950–10962

    Article  Google Scholar 

  • Pearlman DA, Case DA, Caldwell JW, Ross WS, Cheatham TE, Debolt S, Ferguson D, Seibel G, Kollman P (1995) Amber, a package of computer-programs for applying molecular mechanics, normal-mode analysis, molecular-dynamics and free-energy calculations to simulate the structural and energetic properties of molecules. Comput Phys Commun 91:1–41

    Article  ADS  MATH  Google Scholar 

  • Renner C, Schleicher M, Moroder L, Holak TA (2002) Practical aspects of the 2D 15N–{1H}–NOE experiment. J Biomol NMR 23:23–33

    Article  Google Scholar 

  • Sancho J (2006) Flavodoxins: sequence, folding, binding, function and beyond. Cell Mol Life Sci 63:855–864

    Article  Google Scholar 

  • Ye Q, Hu Y, Jin C (2014) Conformational dynamics of Escherichia coli flavodoxins in apo- and holo-states by solution NMR spectroscopy. PLoS One 9:e103936

    Article  Google Scholar 

  • Zhang P, Dayie KT, Wagner G (1997) Unusual lack of internal mobility and fast overall tumbling in oxidized flavodoxin from Anacystis nidulans. J Mol Biol 272:443–455

    Article  Google Scholar 

Download references

Acknowledgments

All NMR experiments were performed at the Beijing NMR Center and the NMR facility of National Center for Protein Sciences at Peking University. This research was supported by Grant 31100525 from the National Natural Science Foundation of China to Y.H.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yunfei Hu or Changwen Jin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ye, Q., Fu, W., Hu, Y. et al. Long-chain flavodoxin FldB from Escherichia coli . J Biomol NMR 60, 283–288 (2014). https://doi.org/10.1007/s10858-014-9874-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10858-014-9874-7

Keywords

Navigation