Skip to main content
Log in

BSH-CP based 3D solid-state NMR experiments for protein resonance assignment

  • Communication
  • Published:
Journal of Biomolecular NMR Aims and scope Submit manuscript

Abstract

We have recently presented band-selective homonuclear cross-polarization (BSH-CP) as an efficient method for CO–CA transfer in deuterated as well as protonated solid proteins. Here we show how the BSH-CP CO–CA transfer block can be incorporated in a set of three-dimensional (3D) solid-state NMR (ssNMR) pulse schemes tailored for resonance assignment of proteins at high static magnetic fields and moderate magic-angle spinning rates. Due to the achieved excellent transfer efficiency of 33 % for BSH-CP, a complete set of 3D spectra needed for unambiguous resonance assignment could be rapidly recorded within 1 week for the model protein ubiquitin. Thus we expect that BSH-CP could replace the typically used CO–CA transfer schemes in well-established 3D ssNMR approaches for resonance assignment of solid biomolecules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  • Baldus M, Petkova AT, Herzfeld J, Griffin RG (1998) Cross polarization in the tilted frame: assignment and spectral simplification in heteronuclear spin systems. Mol Phys 95(6):1197–1207. doi:10.1080/002689798166215

    Article  ADS  Google Scholar 

  • Boeckmann A, Gardiennet C, Verel R, Hunkeler A, Loquet A, Pintacuda G, Emsley L, Meier BH, Lesage A (2009) Characterization of different water pools in solid-state NMR protein samples. J Biomol NMR 45(3):319–327. doi:10.1007/s10858-009-9374-3

    Article  Google Scholar 

  • Chevelkov V, Giller K, Becker S, Lange A (2013a) Efficient CO–CA transfer in highly deuterated proteins by band-selective homonuclear cross-polarization. J Magn Reson 230:205–211. doi:10.1016/j.jmr.2013.02.021

    Article  ADS  Google Scholar 

  • Chevelkov V, Shi C, Fasshuber HK, Becker S, Lange A (2013b) Efficient band-selective homonuclear CO–CA cross-polarization in protonated proteins. J Biomol NMR 56(4):303–311. doi:10.1007/s10858-013-9767-1

    Article  Google Scholar 

  • Demers J-P, Chevelkov V, Lange A (2011) Progress in correlation spectroscopy at ultra-fast magic-angle spinning: basic building blocks and complex experiments for the study of protein structure and dynamics. Solid State Nucl Magn Reson 40(3):101–113. doi:10.1016/j.ssnmr.2011.07.002

    Article  Google Scholar 

  • Dusold S, Sebald A (2000) Dipolar recoupling under magic-angle spinning conditions. Annu Rep NMR Spectrosc 41(41):185–264. doi:10.1016/s0066-4103(00)41010-0

    Article  Google Scholar 

  • Fung BM, Khitrin AK, Ermolaev K (2000) An improved broadband decoupling sequence for liquid crystals and solids. J Magn Reson 142(1):97–101

    Google Scholar 

  • Goldbourt A (2013) Biomolecular magic-angle spinning solid-state NMR: recent methods and applications. Curr Opin Biotechnol 24(4):705–715. doi:10.1016/j.copbio.2013.02.010

    Article  Google Scholar 

  • Habenstein B, Wasmer C, Bousset L, Sourigues Y, Schuetz A, Loquet A, Meier BH, Melki R, Boeckmann A (2011) Extensive de novo solid-state NMR assignments of the 33 kDa C-terminal domain of the Ure2 prion. J Biomol NMR 51(3):235–243. doi:10.1007/s10858-011-9530-4

    Article  Google Scholar 

  • Hodgkinson P, Emsley L (1999) The accuracy of distance measurements in solid-state NMR. J Magn Reson 139(1):46–59. doi:10.1006/jmre 1999.1759

    Article  ADS  Google Scholar 

  • Hong M, Zhang Y, Hu F (2012) Membrane Protein Structure and Dynamics from NMR Spectroscopy. In: Johnson MA, Martinez TJ (eds) Annual review of physical chemistry, vol 63, pp 1–24. doi:10.1146/annurev-physchem-032511-143731

  • Igumenova TI, McDermott AE, Zilm KW, Martin RW, Paulson EK, Wand AJ (2004) Assignments of carbon NMR resonances for microcrystalline ubiquitin. J Am Chem Soc 126(21):6720–6727. doi:10.1021/ja030547o

    Article  Google Scholar 

  • Jehle S, Rajagopal P, Bardiaux B, Markovic S, Kuehne R, Stout JR, Higman VA, Klevit RE, van Rossum B-J, Oschkinat H (2010) Solid-state NMR and SAXS studies provide a structural basis for the activation of alpha B-crystallin oligomers. Nat Struct Mol Biol 17(9):1037–1042. doi:10.1038/nsmb.1891

    Article  Google Scholar 

  • Knight MJ, Pell AJ, Bertini I, Felli IC, Gonnelli L, Pierattelli R, Herrmann T, Emsley L, Pintacuda G (2012) Structure and backbone dynamics of a microcrystalline metalloprotein by solid-state NMR. Proc Natl Acad Sci USA 109(28):11095–11100. doi:10.1073/pnas.1204515109

    Article  ADS  Google Scholar 

  • Laage S, Marchetti A, Sein J, Pierattelli R, Sass HJ, Grzesiek S, Lesage A, Pintacuda G, Emsley L (2008) Band-Selective 1H–13C Cross-polarization in fast magic angle spinning solid-state NMR spectroscopy. J Am Chem Soc 130(51):17216–17217. doi:10.1021/ja805926d

    Article  Google Scholar 

  • Lazar GA, Desjarlais JR, Handel TM (1997) De novo design of the hydrophobic core of ubiquitin. Protein Sci 6(6):1167–1178

    Article  Google Scholar 

  • Loquet A, Sgourakis NG, Gupta R, Giller K, Riedel D, Goosmann C, Griesinger C, Kolbe M, Baker D, Becker S, Lange A (2012) Atomic model of the type III secretion system needle. Nature 486(7402):276–279. doi:10.1038/nature11079

    ADS  Google Scholar 

  • Mainz A, Religa TL, Sprangers R, Linser R, Kay LE, Reif B (2013) NMR spectroscopy of soluble protein complexes at one mega-dalton and beyond. Angew Chem Int Ed Engl 52(33):8746–8751. doi:10.1002/anie.201301215

    Article  Google Scholar 

  • Morcombe CR, Gaponenko V, Byrd RA, Zilm KW (2004) Diluting abundant spins by isotope edited radio frequency field assisted diffusion. J Am Chem Soc 126(23):7196–7197. doi:10.1021/ja047919t

    Article  Google Scholar 

  • Pauli J, Baldus M, van Rossum B, de Groot H, Oschkinat H (2001) Backbone and side-chain 13C and 15N signal assignments of the alpha-spectrin SH3 domain by magic angle spinning solid-state NMR at 17.6 tesla. ChemBioChem 2(4):272–281. doi:10.1002/1439-7633(20010401)2:4<272:aid-cbic272>3.0.co;2-2

    Article  Google Scholar 

  • Scholz I, Huber M, Manolikas T, Meier BH, Ernst M (2008) MIRROR recoupling and its application to spin diffusion under fast magic-angle spinning. Chem Phys Lett 460(1–3):278–283. doi:10.1016/j.cplett.2008.05.058

    Article  ADS  Google Scholar 

  • Schubert M, Manolikas T, Rogowski M, Meier BH (2006) Solid-state NMR spectroscopy of 10 % C-13 labeled ubiquitin: spectral simplification and stereospecific assignment of isopropyl groups. J Biomol NMR 35(3):167–173. doi:10.1007/s10858-006-9025-x

    Article  Google Scholar 

  • Schuetz A, Wasmer C, Habenstein B, Verel R, Greenwald J, Riek R, Boeckmann A, Meier BH (2010) Protocols for the sequential solid-state NMR spectroscopic assignment of a uniformly labeled 25 kDa protein: HET-s(1-227). ChemBioChem 11(11):1543–1551. doi:10.1002/cbic.201000124

    Article  Google Scholar 

  • Seidel K, Etzkorn M, Heise H, Becker S, Baldus M (2005) High-resolution solid-state NMR studies on uniformly 13C, 15N-labeled ubiquitin. ChemBioChem 6(9):1638–1647. doi:10.1002/cbic.200500085

    Article  Google Scholar 

  • Sengupta I, Nadaud PS, Helmus JJ, Schwieters CD, Jaroniec CP (2012) Protein fold determined by paramagnetic magic-angle spinning solid-state NMR spectroscopy. Nat Chem 4(5):410–417. doi:10.1038/nchem.1299

    Article  Google Scholar 

  • Shaka AJ, Keeler J, Frenkiel T, Freeman R (1983) An improved sequence for broad-band decoupling—WALTZ-16. J Magn Reson 52(2):335–338

    Google Scholar 

  • Shi L, Ahmed MAM, Zhang W, Whited G, Brown LS, Ladizhansky V (2009) Three-dimensional solid-state NMR study of a seven-helical integral membrane proton pump-structural insights. J Mol Biol 386(4):1078–1093. doi:10.1016/j.jmb.2009.01.011

    Article  Google Scholar 

  • Sperling LJ, Berthold DA, Sasser TL, Jeisy-Scott V, Rienstra CM (2010) Assignment strategies for large proteins by magic-angle spinning NMR: the 21-kDa disulfide-bond-forming enzyme DsbA. J Mol Biol 399(2):268–282. doi:10.1016/j.jmb.2010.04.012

    Article  Google Scholar 

  • Takegoshi K, Nakamura S, Terao T (2001) C-13-H-1 dipolar-assisted rotational resonance in magic-angle spinning NMR. Chem Phys Lett 344(5–6):631–637. doi:10.1016/s0009-2614(01)00791-6

    Article  ADS  Google Scholar 

  • Tycko R (2011) Solid-state NMR studies of amyloid fibril structure. In: Leone SR, Cremer PS, Groves JT, Johnson MA (eds) Annual review of physical chemistry, vol 62, pp 279–299. doi:10.1146/annurev-physchem-032210-103539

  • Ullrich SJ, Hellmich UA, Ullrich S, Glaubitz C (2011) Interfacial enzyme kinetics of a membrane bound kinase analyzed by real-time MAS-NMR. Nat Chem Biol 7(5):263–270. doi:10.1038/nchembio.543

    Article  Google Scholar 

  • Verel R, Ernst M, Meier BH (2001) Adiabatic dipolar recoupling in solid-state NMR: the DREAM scheme. J Magn Reson 150(1):81–99. doi:10.1006/jmre 2001.2310

    Article  ADS  Google Scholar 

  • Vijayan V, Demers J-P, Biernat J, Mandelkow E, Becker S, Lange A (2009) Low-power solid-state NMR experiments for resonance assignment under fast magic-angle spinning. ChemPhysChem 10(13):2205–2208. doi:10.1002/cphc.200900439

    Article  Google Scholar 

  • Wasmer C, Lange A, Van Melckebeke H, Siemer AB, Riek R, Meier BH (2008) Amyloid fibrils of the HET-s(218–289) prion form a beta solenoid with a triangular hydrophobic core. Science 319(5869):1523–1526. doi:10.1126/science.1151839

    Article  ADS  Google Scholar 

Download references

Acknowledgments

We thank Karin Giller and Brigitta Angerstein for expert technical assistance. This work was supported by the Max Planck Society, the DFG (Emmy Noether Fellowship to A. L.), and the European Union Seventh Framework Program under Grant Agreement 261863 (Bio-NMR). C. S. acknowledges funding from the MPG-CAS Joint Doctoral Promotion Programme. B. H. acknowledges EMBO for a long-term postdoctoral fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adam Lange.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 55 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shi, C., Fasshuber, H.K., Chevelkov, V. et al. BSH-CP based 3D solid-state NMR experiments for protein resonance assignment. J Biomol NMR 59, 15–22 (2014). https://doi.org/10.1007/s10858-014-9820-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10858-014-9820-8

Keywords

Navigation