Skip to main content
Log in

A NMR experiment for simultaneous correlations of valine and leucine/isoleucine methyls with carbonyl chemical shifts in proteins

  • Communication
  • Published:
Journal of Biomolecular NMR Aims and scope Submit manuscript

Abstract

A methyl-detected ‘out-and-back’ NMR experiment for obtaining simultaneous correlations of methyl resonances of valine and isoleucine/leucine residues with backbone carbonyl chemical shifts, SIM-HMCM(CGCBCA)CO, is described. The developed pulse-scheme serves the purpose of convenience in recording a single data set for all Ileδ1, Leuδ and Valγ (ILV) methyl positions instead of acquiring two separate spectra selective for valine or leucine/isoleucine residues. The SIM-HMCM(CGCBCA)CO experiment can be used for ILV methyl assignments in moderately sized protein systems (up to ~100 kDa) where the backbone chemical shifts of 13Cα, 13Cβ and 13CO are known from prior NMR studies and where some losses in sensitivity can be tolerated for the sake of an overall reduction in NMR acquisition time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  • Amero C, Schanda P, Durá MA, Ayala I, Marion D, Franzetti B, Brutscher B, Boisbouvier J (2009) Fast two-dimensional NMR spectroscopy of high molecular weight protein assemblies. J Am Chem Soc 131:3448–3449

    Article  Google Scholar 

  • Bax A, Griffey RH, Hawkings BL (1983) Correlation of proton and nitrogen-15 chemical shifts by multiple quantum NMR. J Magn Reson 55:301–315

    ADS  Google Scholar 

  • Boyd J, Soffe N (1989) Selective excitation by pulse shaping combined with phase modulation. J Magn Reson 85:406–413

    ADS  Google Scholar 

  • Chauvin F, Brand L, Roseman S (1994) Sugar transport by the bacterial phosphotransferase system. Characterization of the Escherichia coli enzyme I monomer/dimer transition kinetics by fluorescence anisotropy. J Biol Chem 269:20270–20274

    Google Scholar 

  • Chauvin F, Brand L, Roseman S (1996) Enzyme I: the first protein and potential regulator of the bacterial phosphoenolpyruvate: glycose phosphotransferase system. Res Microbiol 147:471–479

    Article  Google Scholar 

  • Delaglio F, Grzesiek S, Vuister GW, Zhu G, Pfeifer J, Bax A (1995) NMRPipe: a multidimensional spectral processing system based on UNIX pipes. J Biomol NMR 6:277–293

    Article  Google Scholar 

  • Emsley L, Bodenhausen G (1987) Gaussian pulse cascades: new analytical functions for rectangular selective inversion and in-phase excitation in NMR. Chem Phys Lett 165:469–476

    Article  ADS  Google Scholar 

  • Feeney J, Partington P, Roberts GCK (1974) The assignment of carbon-13 resonances from carbonyl groups in peptides. J Magn Reson 13:268–274

    ADS  Google Scholar 

  • Gans P, Hamelin O, Sounier R, Ayala I, Durá MA, Amero CD, Noirclerc-Savoye M, Franzetti B, Plevin MJ, Boisbouvier J (2010) Stereospecific isotopic labeling of methyl groups for NMR spectroscopic studies of high-molecular-weight proteins. Angew Chem Int Ed Engl 49:1958–1962

    Article  Google Scholar 

  • Gardner KH, Kay LE (1998) The use of 2H, 13C, 15N multidimensional NMR to study the structure and dynamics of proteins. Annu Rev Biophys Biomol Struct 27:357–406

    Article  Google Scholar 

  • Garrett DS, Seok YJ, Liao DI, Peterkofsky A, Gronenborn AM, Clore GM (1997) Solution structure of the 30 kDa N-terminal domain of enzyme I of the Escherichia coli phosphoenolpyruvate: sugar phosphotransferase system by multidimensional NMR. Biochemistry 36:2517–2530

    Article  Google Scholar 

  • Geen H, Freeman R (1991) Band-selective radiofrequency pulses. J Magn Reson 93:93–141

    ADS  Google Scholar 

  • Gelis I, Bonvin AM, Keramisanou D, Koukaki M, Gouridis G, Karamanou S, Economou A, Kalodimos CG (2007) Structural basis for signal-sequence recognition by the translocase motor SecA as determined by NMR. Cell 131:756–769

    Article  Google Scholar 

  • Goto NK, Gardner KH, Mueller GA, Willis RC, Kay LE (1999) A robust and cost-effective method for the production of Val, Leu, Ile (δ1) methyl-protonated 15N-, 13C-, 2H-labeled proteins. J Biomol NMR 13:369–374

    Article  Google Scholar 

  • Haigh CW, Mallion RB (1979) Ring current theories in nuclear magnetic resonance. Prog Nucl Magn Reson Spectrosc 13:303–344

    Article  Google Scholar 

  • Hamel DJ, Dahlquist FW (2005) The contact interface of a 120 kD CheA–CheW complex by methyl TROSY interaction spectroscopy. J Am Chem Soc 127:9676–9677

    Article  Google Scholar 

  • John M, Schmitz C, Park AY, Dixon NE, Huber T, Otting G (2007) Sequence-specific and stereospecific assignment of methyl groups using paramagnetic lanthanides. J Am Chem Soc 129:13749–13757

    Article  Google Scholar 

  • Johnson BA, Blevins RA (1994) NMRView: a computer program for the visualization and analysis of NMR data. J Biomol NMR 4:603–614

    Article  Google Scholar 

  • Kainosho M, Nagao H, Tsuji T (1987) Local structural features around the C-terminal segment of Streptomyces subtilisin inhibitor studied by carbonyl carbon nuclear magnetic resonances of three phenylalanyl residues. Biochemistry 26:1068–1075

    Article  Google Scholar 

  • Kay LE, Ikura M, Tschudin R, Bax A (1990) Three-dimensional triple-resonance NMR spectroscopy of isotopically enriched proteins. J Magn Reson 89:496–514

    ADS  Google Scholar 

  • Koradi R, Billeter M, Wüthrich K (1996) MOLMOL: a program for display and analysis of macromolecular structures. J Mol Graph 14:51–55

    Article  Google Scholar 

  • Kuszewski J, Gronenborn AM, Clore GM (1995) The impact of direct refinement against proton chemical shifts in protein structure determination by NMR. J Magn Reson Ser B 107:293–297

    Article  Google Scholar 

  • LiWang AC, Bax A (1996) Equilibrium protium/deuterium fractionation of backbone amides in U-13C/15N labeled human ubiquitin by triple resonance NMR. J Am Chem Soc 118:12864–12865

    Article  Google Scholar 

  • Marion D, Ikura M, Tschudin R, Bax A (1989) Rapid recording of 2D NMR spectra without phase cycling. Application to the study of hydrogen exchange. J Magn Reson 85:393–399

    ADS  Google Scholar 

  • Meadow ND, Fox DK, Roseman S (1990) The bacterial phosphoenolpyruvate: glycose phosphotransferase system. Annu Rev Biochem 59:497–542

    Article  Google Scholar 

  • Mueller L (1979) Sensitivity enhanced detection of weak nuclei using heteronuclear multiple quantum coherence. J Am Chem Soc 101:4481–4484

    Article  Google Scholar 

  • Ollerenshaw JE, Tugarinov V, Kay LE (2003) Methyl TROSY: explanation and experimental verification. Magn Reson Chem 41:843–852

    Article  Google Scholar 

  • Patel HV, Vyas KA, Savtchenko R, Roseman S (2006) The monomer/dimer transition of enzyme I of the Escherichia coli phosphotransferase system. J Biol Chem 281:17570–17578

    Article  Google Scholar 

  • Patt SL (1992) Single- and multiple-frequency-shifted laminar pulses. J Magn Reson 96:94–102

    ADS  Google Scholar 

  • Religa TL, Sprangers R, Kay LE (2010) Dynamic regulation of archaeal proteasome gate opening as studied by TROSY NMR. Science 328:98–102

    Article  ADS  Google Scholar 

  • Rosen MK, Gardner KH, Willis RC, Parris WE, Pawson T, Kay LE (1996) Selective methyl group protonation of perdeuterated proteins. J Mol Biol 263:627–636

    Article  Google Scholar 

  • Rosenzweig R, Moradi S, Zarrine-Afsar A, Glover JR, Kay LE (2013) Unraveling the mechanism of protein disaggregation through a ClpB–DnaK interaction. Science 339:1080–1083

    Article  ADS  Google Scholar 

  • Ruschak AM, Kay LE (2010) Methyl groups as probes of supra-molecular structure, dynamics and function. J Biomol NMR 46:75–87

    Article  Google Scholar 

  • Ruschak AM, Religa TL, Breuer S, Witt S, Kay LE (2010) The proteasome antechamber maintains substrates in an unfolded state. Nature 467:868–871

    Article  ADS  Google Scholar 

  • Seok YJ, Lee BR, Zhu PP, Peterkofsky A (1996) Importance of the carboxyl-terminal domain of enzyme I of the Escherichia coli phosphoenolpyruvate: sugar phosphotransferase system for phosphoryl donor specificity. Proc Natl Acad Sci USA 93:347–351

    Article  ADS  Google Scholar 

  • Seok YJ, Zhu PP, Koo BM, Peterkofsky A (1998) Autophosphorylation of enzyme I of the Escherichia coli phosphoenolpyruvate: sugar phosphotransferase system requires dimerization. Biochem Biophys Res Commun 250:381–384

    Article  Google Scholar 

  • Shaka AJ, Keeler J, Frenkiel T, Freeman R (1983) An improved sequence for broadband decoupling: WALTZ-16. J Magn Reson 52:335–338

    ADS  Google Scholar 

  • Sheppard D, Guo C, Tugarinov V (2009a) 4D 1H–13C NMR spectroscopy for assignments of alanine methyls in large and complex protein structures. J Am Chem Soc 131:1364–1365

    Article  Google Scholar 

  • Sheppard D, Guo C, Tugarinov V (2009b) Methyl-detected ‘out-and-back’ NMR experiments for simultaneous assignments of Alaβ and Ileγ2 methyl groups in large proteins. J Biomol NMR 43:229–238

    Article  Google Scholar 

  • Sheppard D, Sprangers R, Tugarinov V (2010) Experimental approaches for NMR studies of sidechain dynamics in high-molecular-weight proteins. Prog Nucl Magn Reson Spectrosc 56:1–45

    Article  Google Scholar 

  • Sprangers R, Kay LE (2007) Quantitative dynamics and binding studies of the 20S proteasome by NMR. Nature 445:618–622

    Article  Google Scholar 

  • Sprangers R, Velyvis A, Kay LE (2007) Solution NMR of supramolecular complexes: providing new insights into function. Nat Methods 4:697–703

    Article  Google Scholar 

  • Sun H, Tugarinov V (2012) Precision measurements of deuterium isotope effects on the chemical shifts of backbone nuclei in proteins: correlations with secondary structure. J Phys Chem B 116:7436–7448

    Article  Google Scholar 

  • Teplyakov A, Lim K, Zhu PP, Kapadia G, Chen CC, Schwartz J, Howard A, Reddy PT, Peterkofsky A, Herzberg O (2006) Structure of phosphorylated enzyme I, the phosphoenolpyruvate: sugar phosphotransferase system sugar translocation signal protein. Proc Natl Acad Sci USA 103:16218–16223

    Article  ADS  Google Scholar 

  • Tüchsen E, Hansen PE (1991) Hydrogen bonding monitored by deuterium isotope effects on carbonyl 13C chemical shift in BPTI: intra-residue hydrogen bonds in antiparallel β-sheet. Int J Biol Macromol 13:2–8

    Article  Google Scholar 

  • Tugarinov V, Kay LE (2003) Ile, Leu, and Val methyl assignments of the 723-residue malate synthase G using a new labeling strategy and novel NMR methods. J Am Chem Soc 125:13868–13878

    Article  Google Scholar 

  • Tugarinov V, Kay LE (2004) An isotope labeling strategy for methyl TROSY spectroscopy. J Biomol NMR 28:165–172

    Article  Google Scholar 

  • Tugarinov V, Hwang PM, Ollerenshaw JE, Kay LE (2003) Cross-correlated relaxation enhanced 1H–13C NMR spectroscopy of methyl groups in very high molecular weight proteins and protein complexes. J Am Chem Soc 125:10420–10428

    Article  Google Scholar 

  • Tugarinov V, Hwang PM, Kay LE (2004) Nuclear magnetic resonance spectroscopy of high-molecular-weight proteins. Annu Rev Biochem 73:107–146

    Article  Google Scholar 

  • Tugarinov V, Kanelis V, Kay LE (2006) Isotope labeling strategies for the study of high-molecular-weight proteins by solution NMR spectroscopy. Nat Protoc 1:749–754

    Article  Google Scholar 

  • Velyvis A, Yang YR, Schachman HK, Kay LE (2007) A solution NMR study showing that active site ligands and nucleotides directly perturb the allosteric equilibrium in aspartate transcarbamoylase. Proc Natl Acad Sci USA 104:8815–8820

    Article  ADS  Google Scholar 

  • Velyvis A, Schachman HK, Kay LE (2009) Assignment of Ile, Leu, and Val methyl correlations in supra-molecular systems: an application to aspartate transcarbamoylase. J Am Chem Soc 131:16534–16543

    Article  Google Scholar 

  • Venditti V, Clore GM (2012) Conformational selection and substrate binding regulate the monomer/dimer equilibrium of the C-terminal domain of Escherichia coli enzyme I. J Biol Chem 287:26989–26998

    Article  Google Scholar 

  • Venditti V, Fawzi NL, Clore GM (2011) Automated sequence- and stereo-specific assignment of methyl-labeled proteins by paramagnetic relaxation and methyl–methyl nuclear Overhauser enhancement spectroscopy. J Biomol NMR 51:319–328

    Article  Google Scholar 

  • Venditti V, Fawzi NL, Clore GM (2012) An efficient protocol for incorporation of an unnatural amino acid in perdeuterated recombinant proteins using glucose-based media. J Biomol NMR 52:191–195

    Article  Google Scholar 

  • Venters RA, Farmer BT, Fierke CA, Spicer LD (1996) Characterizing the use of perdeuteration in NMR studies of large proteins: 13C, 15N and 1H assignments of human carbonic anhydrase II. J Mol Biol 264:1101–1116

    Article  Google Scholar 

  • Weigel N, Kukuruzinska MA, Nakazawa A, Waygood EB, Roseman S (1982a) Sugar transport by the bacterial phosphotransferase system. Phosphoryl transfer reactions catalyzed by enzyme I of Salmonella typhimurium. J Biol Chem 257:14477–14491

    Google Scholar 

  • Weigel N, Waygood EB, Kukuruzinska MA, Nakazawa A, Roseman S (1982b) Sugar transport by the bacterial phosphotransferase system. Isolation and characterization of enzyme I from Salmonella typhimurium. J Biol Chem 257:14461–14469

    Google Scholar 

  • Xu Y, Liu M, Simpson PJ, Isaacson R, Cota E, Marchant J, Yang D, Zhang X, Freemont P, Matthews S (2009) Automated assignment in selectively methyl-labeled proteins. J Am Chem Soc 131:9480–9481

    Article  Google Scholar 

  • Zhang D, Tugarinov V (2013) Accurate measurements of the effects of deuteration at backbone amide positions on the chemical shifts of 15N, 13Cα, 13Cβ, 13CO and 1Hα nuclei in proteins. J Biomol NMR 56:169–182

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by funds from the Intramural Program of the NIH, NIDDK, and the Intramural AIDS Targeted Antiviral Program of the Office of the Director of the NIH (to G.M.C.).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Vitali Tugarinov or G. Marius Clore.

Electronic supplementary material

Below is the link to the electronic supplementary material.

10858_2013_9803_MOESM1_ESM.pdf

Supporting Information Available: Listing of the Bruker pulse code for the SIM-HMCM(CGCBCA)CO experiment. NMR acquisition parameters and nmrPipe processing scripts are available from the authors upon request (PDF 83 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tugarinov, V., Venditti, V. & Marius Clore, G. A NMR experiment for simultaneous correlations of valine and leucine/isoleucine methyls with carbonyl chemical shifts in proteins. J Biomol NMR 58, 1–8 (2014). https://doi.org/10.1007/s10858-013-9803-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10858-013-9803-1

Keywords

Navigation