Skip to main content
Log in

Redox-dependent conformational changes in eukaryotic cytochromes revealed by paramagnetic NMR spectroscopy

  • Article
  • Published:
Journal of Biomolecular NMR Aims and scope Submit manuscript

Abstract

Cytochrome c (Cc) is a soluble electron carrier protein, transferring reducing equivalents between Cc reductase and Cc oxidase in eukaryotes. In this work, we assessed the structural differences between reduced and oxidized Cc in solution by paramagnetic NMR spectroscopy. First, we have obtained nearly-complete backbone NMR resonance assignments for iso-1-yeast Cc and horse Cc in both oxidation states. These were further used to derive pseudocontact shifts (PCSs) arising from the paramagnetic haem group. Then, an extensive dataset comprising over 450 measured PCSs and high-resolution X-ray and solution NMR structures of both proteins were used to define the anisotropic magnetic susceptibility tensor, Δχ. For most nuclei, the PCSs back-calculated from the Δχ tensor are in excellent agreement with the experimental PCS values. However, several contiguous stretches—clustered around G41, N52, and A81—exhibit large deviations both in yeast and horse Cc. This behaviour is indicative of redox-dependent structural changes, the extent of which is likely conserved in the protein family. We propose that the observed discrepancies arise from the changes in protein dynamics and discuss possible functional implications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. The amino-acid numbering for yCc used in this work is based on the sequence alignment with horse heart Cc (hCc), which generates a negative numbering for the first five residues.

References

  • Baistrocchi P, Banci L, Bertini I, Turano P, Bren KL, Gray HB (1996) Three-dimensional solution structure of Saccharomyces cerevisiae reduced iso-1-cytochrome c. Biochemistry 35:13788–13796

    Article  Google Scholar 

  • Banci L, Assfalg M (2001) Mitochondrial cytochrome c. In: Messerschmidt A, Huber R, Poulos TL, Wieghardt K (eds) Handbook of metalloproteins. Wiley, Chichester, pp 33–43

    Google Scholar 

  • Banci L, Bertini I, Bren KL, Gray HB, Sompornpisut P, Turano P (1997a) Solution structure of oxidized Saccharomyces cerevisiae iso-1-cytochrome c. Biochemistry 36:8992–9001

    Article  Google Scholar 

  • Banci L, Bertini I, Gray HB, Luchinat C, Reddig T, Rosato A, Turano P (1997b) Solution structure of oxidized horse heart cytochrome c. Biochemistry 36:9867–9877

    Article  Google Scholar 

  • Banci L, Bertini I, Huber JG, Spyroulias GA, Turano P (1999a) Solution structure of reduced horse heart cytochrome c. J Biol Inorg Chem 4:21–31

    Article  Google Scholar 

  • Banci L, Bertini I, Rosato A, Varani G (1999b) Mitochondrial cytochromes c: a comparative analysis. J Biol Inorg Chem 4:824–837

    Article  Google Scholar 

  • Banci L, Bertini I, Luchinat C, Turano P (2000) Solution structures of hemoproteins. In: Kadish KM, Smith KM, Guilard R (eds) The porphyrin handbook. Academic Press, San Diego, CA, pp 323–350

    Google Scholar 

  • Baxter SM, Fetrow JS (1999) Hydrogen exchange behavior of [U-15N]-labeled oxidised and reduced iso-1-cytochrome c. Biochemistry 38:4493–4503

    Article  Google Scholar 

  • Berghuis AM, Brayer GD (1992) Oxidation state-dependent conformational changes in cytochrome c. J Mol Biol 223:959–976

    Article  Google Scholar 

  • Bertini I, Luchinat C, Parigi G (2002) Magnetic susceptibility in paramagnetic NMR. Progress in Nuclear Magnetic Resonance Spectroscopy 40:249–273

    Article  Google Scholar 

  • Boyd J, Dobson CM, Morar AS, Williams RJP, Pielak GJ (1999) 1H and 15N hyperfine shifts of cytochrome c. J Am Chem Soc 121:9247–9248

    Article  Google Scholar 

  • Bushnell GW, Louie GV, Brayer GD (1990) High-resolution three-dimensional structure of horse heart cytochrome c. J Mol Biol 214:585–595

    Article  Google Scholar 

  • Delaglio F, Grzesiek S, Vuister GW, Zhu G, Pfeifer J, Bax A (1995) NMRPipe: a multidimensional spectral processing system based on UNIX pipes. J Biomol NMR 6:277–293

    Article  Google Scholar 

  • DeLano WL (2002) The PyMOL molecular graphics system. DeLano Scientific, Palo Alto

    Google Scholar 

  • Feng YQ, Roder H, Englander SW (1990) Redox-dependent structure change and hyperfine nuclear magnetic resonance shifts in cytochrome c. Biochemistry 29:3494–3504

    Article  Google Scholar 

  • Fetrow JS, Baxter SM (1999) Assignment of 15N chemical shifts and 15N relaxation measurements for oxidized and reduced iso-1-cytochrome c. Biochemistry 38:4480–4492

    Article  Google Scholar 

  • Gao Y, Boyd J, Williams RJP, Pielak GJ (1990) Assignment of proton resonances, identification of secondary structural elements, and analysis of backbone chemical shifts for the C102T variant of yeast iso-1-cytochrome c and horse cytochrome c. Biochemistry 29:6994–7003

    Article  Google Scholar 

  • Gao Y, Boyd J, Pielak GJ, Williams RJP (1991) Comparison of reduced and oxidized yeast iso-1-cytochrome c using proton paramagnetic shifts. Biochemistry 30:1928–1934

    Article  Google Scholar 

  • Han B, Liu Y, Ginzinger S, Wishart D (2011) SHIFTX2: significantly improved protein chemical shift prediction. J Biomol NMR 50:43–57

    Article  Google Scholar 

  • Iwahara J, Schwieters CD, Clore GM (2004) Ensemble approach for NMR structure refinement against 1H paramagnetic relaxation enhancement data arising from a flexible paramagnetic group attached to a macromolecule. J Am Chem Soc 126:5879–5896

    Article  Google Scholar 

  • John M, Park AY, Pintacuda G, Dixon NE, Otting G (2005) Weak alignment of paramagnetic proteins warrants correction for residual CSA effects in measurements of pseudocontact shifts. J Am Chem Soc 127:17190–17191

    Article  Google Scholar 

  • Levitt M, Perutz MF (1988) Aromatic rings act as hydrogen bond acceptors. J Mol Biol 201:751–754

    Article  Google Scholar 

  • Liu W, Rumbley J, Englander SW, Wand AJ (2003) Backbone and side-chain heteronuclear resonance assignments and hyperfine NMR shifts in horse cytochrome c. Prot Sci 12:2104–2108

    Article  Google Scholar 

  • Louie GV, Brayer GD (1990) High-resolution refinement of yeast iso-1-cytochrome c and comparisons with other eukaryotic cytochromes c. J Mol Biol 214:527–555

    Article  Google Scholar 

  • Moench SJ, Shi TM, Satterlee JD (1991) Proton-NMR studies of the effects of ionic strength and pH on the hyperfine-shifted resonances and phenylalanine-82 environment of three species of mitochondrial ferricytochrome c. Eur J Biochem 197:631–641

    Article  Google Scholar 

  • Morar AS, Kakouras D, Young GB, Boyd J, Pielak GJ (1999) Expression of 15N-labeled eukaryotic cytochrome c in Escherichia coli. J Biol Inorg Chem 4:220–222

    Article  Google Scholar 

  • Pollock WBR, Rosell FI, Twitchett MB, Dumont ME, Mauk AG (1998) Bacterial expression of a mitochondrial cytochrome c. Trimethylation of Lys 72 in yeast iso-1-cytochrome c and the alkaline conformational transition. Biochemistry 37:6124–6131

    Article  Google Scholar 

  • Qi PX, Beckman RA, Wand AJ (1996) Solution structure of horse heart ferricytochrome c and detection of redox-related structural changes by high-resolution 1H NMR. Biochemistry 35:12275–12286

    Article  Google Scholar 

  • Rule GS, Hitchens TK (2006) Fundamentals of protein NMR spectroscopy. Springer, Dordrecht

    Google Scholar 

  • Rumbley JN, Hoang L, Englander SW (2002) Recombinant equine cytochrome c in Escherichia coli: high-level expression, characterization, and folding and assembly mutants. Biochemistry 41:13894–13901

    Article  Google Scholar 

  • Schmitz C, Stanton-Cook MJ, Su X-C, Otting G, Huber T (2008) Numbat: an interactive software tool for fitting Δχ-tensors to molecular coordinates using pseudocontact shifts. J Biomol NMR 41:179–189

    Article  Google Scholar 

  • Schwieters CD, Kuszewski JJ, Tjandra N, Clore GM (2003) The Xplor-NIH NMR molecular structure determination package. J Magn Reson 160:66–74

    Article  ADS  Google Scholar 

  • Sukits SF, Erman JE, Satterlee JD (1997) Proton NMR assignments and magnetic axes orientations for wild-type yeast iso-1-ferricytochrome c free in solution and bound to cytochrome c peroxidase. Biochemistry 36:5251–5259

    Article  Google Scholar 

  • Timkovich R, Cai M (1993) Investigation of the structure of oxidized Pseudomonas aeruginosa cytochrome c-551 by NMR: comparison of observed paramagnetic shifts and calculated pseudocontact shifts. Biochemistry 32:11516–11523

    Article  Google Scholar 

  • Turner DL, Williams RJP (1993) 1H and 13C NMR investigation of redox-state-dependent and temperature-dependent conformational changes in horse cytochrome c. Eur J Biochem 211:555–562

    Article  Google Scholar 

  • Ubbink M, Worrall JAR, Canters GW, Groenen EJJ, Huber M (2002) Paramagnetic resonance of biological metal centers. Ann Rev Biophys Biomol Struc 31:393–422

    Article  Google Scholar 

  • Vranken WF, Boucher W, Stevens TJ, Fogh RH, Pajon A, Llinas M, Ulrich EL, Markley JL, Ionides J, Laue ED (2005) The CCPN data model for NMR spectroscopy: development of a software pipeline. Proteins 59:687–696

    Article  Google Scholar 

  • Weiner MP, Costa GL, Schoettlin W, Cline J, Mathur E, Bauer JC (1994) Site-directed mutagenesis of double-stranded DNA by the polymerase chain reaction. Gene 151:119–123

    Article  Google Scholar 

  • Williams G, Clayden NJ, Moore GR, Williams RJP (1985) Comparison of the solution and crystal structures of mitochondrial cytochrome c—analysis of paramagnetic shifts in the nuclear magnetic resonance spectrum of ferricytochrome c. J Mol Biol 183:447–460

    Article  Google Scholar 

  • Worrall JAR, Kolczak U, Canters GW, Ubbink M (2001) Interaction of yeast iso-1-cytochrome c with cytochrome c peroxidase investigated by [15N, 1H] heteronuclear NMR spectroscopy. Biochemistry 40:7069–7076

    Article  Google Scholar 

Download references

Acknowledgments

We thank Dr. Jonathan Worrall and Prof. Marcellus Ubbink for the kind gifts of the Cc expression vectors, Dr. Christophe Schmitz for useful tips on the installation and use of Numbat software, and Dr. Lieven Buts for the help with the data analysis. ANV is an FWO Post-Doctoral Researcher.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nico A. J. van Nuland.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1126 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Volkov, A.N., Vanwetswinkel, S., Van de Water, K. et al. Redox-dependent conformational changes in eukaryotic cytochromes revealed by paramagnetic NMR spectroscopy. J Biomol NMR 52, 245–256 (2012). https://doi.org/10.1007/s10858-012-9607-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10858-012-9607-8

Keywords

Navigation