Skip to main content
Log in

A. fulgidus SRP54 M-domain

  • NMR Structure Note
  • Published:
Journal of Biomolecular NMR Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

References

  • Altieri AS, Hinton DP, Byrd RA (1995) Association of biomolecular systems via pulsed field gradient NMR self-diffusion measurements. J Am Chem Soc 117:7566–7567

    Article  Google Scholar 

  • Batey RT, Rambo RP, Lucast L, Rha B, Doudna JA (2000) Crystal structure of the ribonucleoprotein core of the signal recognition particle. Science 287:1232–1239

    Article  ADS  Google Scholar 

  • Chou JJ, Gaemers S, Howder B, Louis JM, Bax A (2001) A simple apparatus for generating stretched polyacrylamide gels, yielding uniform alignment of proteins and detergent micelles. J Biomol NMR 21:377–382

    Article  Google Scholar 

  • Clemons WJ, Gowda K, Black S, Zwieb C, Ramakrishnan V (1999) Crystal structure of the conserved subdomain of human protein SRP54M at 2.1 Å resolution: Evidence for the mechanism of signal peptide binding. J Mol Biol 292:697–705

    Article  Google Scholar 

  • Cornilescu G, Delaglio F, Bax A (1999) Protein backbone angle restraints from searching a database for chemical shift and sequence homology. J Biomol NMR 13:289–302

    Article  Google Scholar 

  • Doudna JA, Batey RT (2004) Structural insights into the signal recognition particle. Annu Rev Biochem 73:539–557

    Article  Google Scholar 

  • Garcia De La Torre J, Huertas ML, Carrasco B (2000) Calculation of hydrodynamic properties of globular proteins from their atomic-level structure. Biophys J 78:719–730

    Article  Google Scholar 

  • High S, Dobberstein B (1991) The signal sequence interacts with the methionine-rich domain of the 54-kD protein of signal recognition particle. J Cell Biol 113:229–233

    Article  Google Scholar 

  • Ilangovan U, Ding W, Zhong Y, Wilson CL, Groppe JC, Trbovich JT, Zuniga J, Demeler B, Tang Q, Gao G, Mulder KM, Hinck AP (2005) Structure and dynamics of the homodimeric dynein light chain km23. J Mol Biol 352:338–354

    Google Scholar 

  • Keenan RJ, Freymann DM, Walter P, Stroud RM (1998) Crystal structure of the signal sequence binding subunit of the signal recognition particle. Cell 94:181–191

    Article  Google Scholar 

  • Kuglstatter A, Oubridge C, Nagai K (2002) Induced structural changes of 7SL RNA during the assembly of human signal recognition particle. Nat Struct Biol 9:740–744

    Article  Google Scholar 

  • Laskowski RA, MacArthur MW, Moss DS, Thornton JM (1993) PROCHECK: a program to check the stereochemical quality of protein structures. J Appl Cryst 26:283–291

    Article  Google Scholar 

  • Mandel AM, Akke M, Palmer AG 3rd (1995) Backbone dynamics of Escherichia coli ribonuclease HI: correlations with structure and function in an active enzyme. J Mol Biol 246:144–163

    Article  Google Scholar 

  • Redfield C (2004) Using nuclear magnetic resonance spectroscopy to study molten globule states of proteins. Methods 34:121–132

    Article  Google Scholar 

  • Rosendal KR, Wild K, Montoya G, Sinning I (2003) Crystal structure of the complete core of archaeal signal recognition particle and implications for interdomain communication. Proc Natl Acad Sci USA 100:14701–14706

    Article  ADS  Google Scholar 

  • Schwieters CD, Kuszewski JJ, Tjandra N, Clore GM (2003) The Xplor-NIH NMR molecular structure determination package. J Magn Reson 160:65–73

    Article  ADS  Google Scholar 

  • Tjandra N, Feller SE, Pastor RW, Bax A (1995) Rotational diffusion anisotropy of human ubiquitin from 15N NMR relaxation. J Am Chem Soc 117:12562–12566

    Article  Google Scholar 

  • Wang Z, Jones JD, Rizo J, Gierasch LM (1993) Membrane-bound conformation of a signal peptide: a transferred nuclear Overhauser effect analysis. Biochemistry 32:13991–13999

    Article  Google Scholar 

  • Wishart DS, Sykes BD (1994) The 13C chemical-shift index: a simple method for the identification of protein secondary structure using 13C chemical shift data. J Biomol NMR 4:171–180

    Article  Google Scholar 

  • Zwahlen C, Legault P, Vincent SJF, Greenblatt J, Konrat R, Kay LE (1997) Methods for measurement of intermolecular NOEs by multinuclear NMR spectroscopy. J Am Chem Soc 119:6711–6721

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Institutes of Health (GM49034 to C.Z. and GM58670 to A.H.) and the Robert A. Welch Foundation (AQ1431 to A.H.). Structural studies made use of the San Antonio Cancer Institute Macromolecular Structure Shared Resource, which is supported in part by National Institutes of Health CA054174.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew P. Hinck.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ilangovan, U., Bhuiyan, S.H., Hinck, C.S. et al. A. fulgidus SRP54 M-domain. J Biomol NMR 41, 241–248 (2008). https://doi.org/10.1007/s10858-008-9252-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10858-008-9252-4

Keywords

Navigation