Skip to main content
Log in

Enhanced signal dispersion in saturation transfer difference experiments by conversion to a 1D-STD-homodecoupled spectrum

  • Article
  • Published:
Journal of Biomolecular NMR Aims and scope Submit manuscript

Abstract

The saturation transfer difference (STD) experiment is a rich source of information on topological aspects of ligand binding to a receptor. The epitope mapping is based on a magnetization transfer after signal saturation from the receptor to the ligand, where interproton distances permit this process. Signal overlap in the STD spectrum can cause difficulties to correctly assign and/or quantitate the measured enhancements. To address this issue we report here a modified version of the routine experiment and a processing scheme that provides a 1D-STD homodecoupled spectrum (i.e. an experiment in which all STD signals appear as singlets) with line widths similar to those in original STD spectrum. These refinements contribute to alleviate problems of signal overlap. The experiment is based on 2D-J-resolved spectroscopy, one of the fastest 2D experiments under conventional data sampling in the indirect dimension, and provides excellent sensitivity, a key factor for the difference experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

J-resolved:

J-resolved spectroscopy

STD:

saturation transfer difference

wg:

watergate

References

  • Alonso-Plaza J.M., Canales M.A., Jiménez M., Roldán J.L., García-Herrero A., Hurrino L., Asensio J.L., Cañada F.J., Romero A., Siebert H.-C., André S., Solís D., Gabius H.-J., Jiménez-Barbero J. (2001). Biochim. Biophys. Acta 1568:225–236

    Google Scholar 

  • André S., Kaltner H., Lensch M., Russwurm R., Siebert H.-C., Fallsehr C., Tajkhorshid E., Heck A.J.R., von Knebel Doeberitz M., Gabius H.-J., Kopitz J. (2005). Int. J. Cancer 114:46–57

    Article  Google Scholar 

  • Asensio J.L., Espinosa J.F., Dietrich H., Cañada F.J., Schmidt R.R., Martín-Lomas M., André S., Gabius H.-J., Jiménez-Barbero J. (1999). J. Am. Chem. Soc. 121:8995–9000

    Article  Google Scholar 

  • Breg J., Romijn, D., van Halbeek H., Vliegenthart J.F.G., Visser R.A., Haasnoot C.A.G. (1988). Carbohydr. Res. 174:23–36

    Article  Google Scholar 

  • Chen A., Shapiro M.J. (1998). J. Am. Chem. Soc. 120:10258–10259

    Article  Google Scholar 

  • Chen A., Shapiro M.J. (2000). J. Am. Chem. Soc. 122:414

    Article  Google Scholar 

  • ClaasenB., Axmann M., Meinecke R., Meyer B. (2005). J. Am. Chem. Soc. 127:916–919

    Article  Google Scholar 

  • Cobas J.C., Martín-Pastor M. (2004). J. Magn. Reson. 171:20–24

    Article  ADS  Google Scholar 

  • Cobas J.C., Sardina F.J. (2004). Concepts Magn. Reson. 19A:80–96

    Article  Google Scholar 

  • Dalvit C., Fasolini M., Flocco M., Knapp S., Pevarello P., Veronesi M. (2002). J. Med. Chem. 45:2610–2614

    Article  Google Scholar 

  • Dalvit C., Pevarello P., Tato M., Veronesi M., Vulpetti A., Sundstrom M. (2000). J. Biomol. NMR 18:65–68

    Article  Google Scholar 

  • Dam T.K., Gabius H.-J., André S., Kaltner H., Lensch M., Brewer C.F. (2005). Biochemistry 44:12564–12571

    Article  Google Scholar 

  • Di Micco S., Bassarello C., Bifulco G., Riccio R., Gomez-Paloma L. (2005). Angew. Chem. Int. Ed. 44:1–5

    Article  Google Scholar 

  • Gabius H.-J. (1997). Eur. J. Biochem. 243:543–576

    Article  Google Scholar 

  • Gabius H.-J. (2001). Anat. Histol. Embryol. 30:3–31

    Article  Google Scholar 

  • Gabius H.-J. (2006). Crit. Rev. Immunol. 26:43–79

    Google Scholar 

  • Gabius H.-J., Siebert H.-C., André S., Jiménez-Barbero J., Rüdiger H. (2004). ChemBioChem 5:740–764

    Article  Google Scholar 

  • Guenneau F., Mutzenhardt P., Grandclaude D., Canet D. (1999). J. Magn. Reson. 140:250–258

    Article  ADS  Google Scholar 

  • Hajduk P.J., Mack J.C., Olejniczak E.T., Park C., Dandliker P.J., Beutel B.A. (2004). J. Am. Chem. Soc. 126:2390–2398

    Article  Google Scholar 

  • Hajduk P.J., Olejniczak E.T., Fesik S.W. (1997). J. Am. Chem. Soc. 119:12257–12261

    Article  Google Scholar 

  • Jahnke W., Floersheim P., Ostermeier C., Zhang X., Hemmig R., Hurth K., Uzunov D.P. (2002). Angew. Chem. Int. Ed. 41:3420–3423

    Article  Google Scholar 

  • Jayalakshmi V., Krishna N.R. (2005). J. Am. Chem. Soc. 127:14080–14084

    Article  Google Scholar 

  • Jayalakshmi V., Krishna N.R. (2004). J. Magn. Reson. 168:36–45

    Article  ADS  Google Scholar 

  • Jayalakshmi V., Biet T., Peters T., Krishna N.R. (2004). J. Am. Chem. Soc. 126:8610–8611

    Article  Google Scholar 

  • Johnson M.A., Pinto B.M. (2002). J. Am. Chem. Soc. 124:15368–15374

    Article  Google Scholar 

  • Klein J., Meinecke R., Mayer M., Meyer B. (1999). J. Am. Chem. Soc. 121:5336–5337

    Article  Google Scholar 

  • Kopitz J., Russwurm R., Kaltner H., André S., Dotti C.G., Gabius H.-J., Abad-Rodriguez J. (2004). Dev. Brain. Res. 153:189–196

    Article  Google Scholar 

  • LaPlante S.R., Aubry N., Deziel R., Ni F., Xu P. (2000). J. Am. Chem. Soc. 120:12530–12535

    Article  Google Scholar 

  • Leonidas D.D., Vatzaki E.H., Vorum H., Celis J.E., Madsen P., Acharya K.R. (1998). Biochemistry 37:13930–13940

    Article  Google Scholar 

  • Li D., DeRose E.F., London R.E. (1999). J. Biomol. NMR 15:71–76

    Article  MATH  Google Scholar 

  • Li D., Levy L.A., Gabel S.A., Lebetkin M.S., DeRose E.F., Wall M.J., Howell E.E., London R.E. (2001). Biochemistry 40:4242–4252

    Article  Google Scholar 

  • Lin M., Shapiro M.J. (1996). J. Org. Chem. 61:7617–7619

    Article  Google Scholar 

  • Lin M., Shapiro M.J., Wareing J.R. (1997). J. Am. Chem. Soc. 119:5249–5250

    Article  Google Scholar 

  • London R.E. (1999). J. Magn. Reson. 141:301–311

    Article  ADS  Google Scholar 

  • López-Lucendo M.F., Solís D., André S., Hirabayashi J., Kasai K.-I., Kaltner H., Gabius H.-J., Romero A. (2004). J. Mol. Biol. 343:957–970

    Article  Google Scholar 

  • Mari S., Serrano-Gomez D., Cañada F.J., Corbi A.L., Jiménez-Barbero J. (2005). Angew. Chem. Int. Ed. 44:296–298

    Article  Google Scholar 

  • Mayer M., Meyer B. (1999). Angew. Chem. Int. Ed. Eng. 38:1784–1788

    Article  Google Scholar 

  • Mayer M., Meyer B. (2000). J. Med. Chem. 43:2093–2099

    Article  Google Scholar 

  • Mayer M., Meyer B. (2001). J. Am. Chem. Soc. 123:6108–6117

    Article  Google Scholar 

  • Meyer B., Peters T. (2003). Angew. Chem. Int. Ed. 42:864–890

    Article  Google Scholar 

  • Meyer B., Weimar T., Peters T. (1997). Eur. J. Biochem. 246:705–709

    Article  Google Scholar 

  • Möller H., Serttas N., Paulsen H., Burchell J.M., Taylor-Papadimitriou J., Meyer B. (2002). Eur. J. Biochem. 269:1444–1455

    Article  Google Scholar 

  • Peng J.W., Moore J., Abdul-Manan N. (2004). Prog. Nucl. Magn. Reson. Spectrosc. 44:225–256

    Article  Google Scholar 

  • Piotto M., Saudek V., Sklena V. (1992). J. Biomol. NMR 2:661–665

    Article  Google Scholar 

  • Platzer N., Davoust D., Lhermitte M., Bauvy D., Meyer D.M., Derappe C. (1989). Carbohydr. Res. 191:191–207

    Article  Google Scholar 

  • Reuter G., Gabius H.-J. (1999). Cell. Mol. Life Sci. 55:368–422

    Article  Google Scholar 

  • Rivera A., Cañada J., Nieto O., Jimenez-Barbero J., Martin-Lomas M. (1992). Eur. J. Biochem. 209:415–422

    Article  Google Scholar 

  • Siebert H.-C., André S., Lu S.Y., Frank M., Kaltner H., van Kuik J.A., Korchagina E.Y., Bovin N.V., Tojkhorshid E., Kaptein R., Vliegenthart J.F.G., von der Lieth C.-W., Jiménez-Barbero J., Gabius H.-J. (2003). Biochemistry 42:14762–14773

    Article  Google Scholar 

  • Siriwardena A.H., Tian F., Noble S., Prestegard J.H. (2002). Angew. Chem. Int. Ed. 41:3454–3457

    Article  Google Scholar 

  • Solis D., Fernandez P., Diaz-Maurino T., Jiménez-Barbero J., Martin-Lomas M. (1993). Eur. J. Biochem. 214:677–683

    Article  Google Scholar 

  • Solís D., Jiménez-Barbero J., Kaltner H., Romero A., Siebert H.-C., von der Lieth C.-W., Gabius H.-J. (2001). Cells Tissues Organs 168:5–23

    Article  Google Scholar 

  • Solís D., Romero A., Kaltner H., Gabius H.-J., Diaz-Mauriño T. (1996). J. Biol. Chem. 271:12744–12748

    Article  Google Scholar 

  • Varela P.F., Solís D., Díaz-Mauriño T., Kaltner H., Gabius H.-J., Romero A. (1999). J. Mol. Biol. 294:537–549

    Article  Google Scholar 

  • Vogtherr M., Peters T. (2000). J. Am. Chem. Soc. 122:6093–6099

    Article  Google Scholar 

  • Wang Y.-S., Liu D., Wyss F.D. (2004). Magn. Reson. Chem. 42:485–489

    Article  Google Scholar 

  • Wu L.N.S., Lin X., Zheng L., Rui L. (2002). J. Chem. Inf. Comput. Sci. 42:274–283

    Article  Google Scholar 

  • Yan J., Kline A.D., Mo H., Zartler E.R., Shapiro M.J. (2002). J. Am. Chem. Soc. 124:9984–9985

    Article  Google Scholar 

  • Yuen Y., Wen X., Sanders D.A.R., Pinto B.M. (2005). Biochemistry 44:14080–14089

    Article  Google Scholar 

Download references

Acknowledgements

The generous support by an EC Marie Curie Research Training Network grant (contract No. HRTN-CT-2005-019561) is gratefully acknowledged. Dr. Juan Carlos Cobas (Mestrelab research) is acknowledged for helping discussions regarding the processing of the STD-homodecoupled spectra.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jesús Jiménez-Barbero.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martín-Pastor, M., Vega-Vázquez, M., De Capua, A. et al. Enhanced signal dispersion in saturation transfer difference experiments by conversion to a 1D-STD-homodecoupled spectrum. J Biomol NMR 36, 103–109 (2006). https://doi.org/10.1007/s10858-006-9055-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10858-006-9055-4

Keywords

Navigation