Skip to main content
Log in

Inferential backbone assignment for sparse data

  • Article
  • Published:
Journal of Biomolecular NMR Aims and scope Submit manuscript

Abstract

This paper develops an approach to protein backbone NMR assignment that effectively assigns large proteins while using limited sets of triple-resonance experiments. Our approach handles proteins with large fractions of missing data and many ambiguous pairs of pseudoresidues, and provides a statistical assessment of confidence in global and position-specific assignments. The approach is tested on an extensive set of experimental and synthetic data of up to 723 residues, with match tolerances of up to 0.5 ppm for \(\hbox{C}^{\upalpha}\) and \(\hbox{C}^{\upbeta}\) resonance types. The tests show that the approach is particularly helpful when data contain experimental noise and require large match tolerances. The keys to the approach are an empirical Bayesian probability model that rigorously accounts for uncertainty in the data at all stages in the analysis, and a hybrid stochastic tree-based search algorithm that effectively explores the large space of possible assignments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andrec M., Levy R. (2002) J. Biomol. NMR 23:263–270

    Article  Google Scholar 

  • Atreya H.S., Sahu S.C., Chary K.V.R., Govil G. (2000) J. Biomol. NMR 17:125–136

    Article  Google Scholar 

  • Bartels C., Güntert P., Billeter M., Wüthrich K. (1997) J. Comp. Chem. 18:139–149

    Article  Google Scholar 

  • Buchler N.E.G., Zuiderweg E.P.R., Wang H., Goldstein R.A. (1997) J. Magn. Res. 125:34–42

    Article  ADS  Google Scholar 

  • Burnham, K.P. and Anderson, D. (2002) Model Selection and Multi-Model Inference, 2nd edn., Springer

  • Coggins B.E., Zhou P. (2003) J. Biomol. NMR 26:93–111

    Article  Google Scholar 

  • Eghbalnia R.H., Bahrami A., Wang L., Assadi A., Markley J.L. (2005) J. Biomol. NMR 32:219–233

    Article  Google Scholar 

  • Gelman, A., Carlin, J.B., Stern, H.S. and Rubin, D.B. (1995) Bayesian Data Analysis, Chapman and Hall

  • Hoeting J.A., Madigan D., Raftery A.E., Volinsky C.T (1999) Stat. Sci. 14:382–417

    Article  MathSciNet  MATH  Google Scholar 

  • Hitchens T.K., Lukin J.A., Zhan Y., McCallum S.A., Rule G.S. (2003) J. Biomol. NMR 25:1–9

    Article  Google Scholar 

  • Hoos H., Stützle T (2005) Stochastic Local Search: Foundations and Applications. Elsevier, CA

    MATH  Google Scholar 

  • Kass R.E., Raftery A.E. (1995) J. Am. Stat. Assoc. 90:773–795

    Article  MATH  Google Scholar 

  • Jung J.-S., Zweckstetter M. (2004) J. Biomol. NMR 30:11–24

    Article  Google Scholar 

  • Lukin J.A., Gove A.P., Talukdar S.N., Ho C. (1997) J. Biomol. NMR 9:151–166

    Article  Google Scholar 

  • Ma L., Jones C.T., Groesch T.D., Kuhn R.J., Post C.B. (2004) Proc. Natl. Acad. Sci. 101:3414–3419

    Article  ADS  Google Scholar 

  • Marin A., Malliavin T., Nicholas P., Delsuc M.-A. (2004) J. Biomol. NMR 30:47–60

    Article  Google Scholar 

  • McGuffin L.J., Bryson K., Jones D.T. (2000) Bioinformatics 16:404–405

    Article  Google Scholar 

  • Moseley H.N.B., Montelione G.T. (1999) Curr. Opin. Struct. Biol. 9:635–642

    Article  Google Scholar 

  • Rieping W., Habeck M., Nilges M. (2005) Science 309:303–306

    Article  ADS  Google Scholar 

  • Seavey B.R., Farr E.A., Westler W.M., Markley J. (1991) J. Biomol. NMR 1:217–236

    Article  Google Scholar 

  • The Ubiquitin NMR Resource, University College London/Ludwig Institute for Cancer Research Joint NMR Laboratory, http://www.biochem.ucl.ac.uk/bsm/nmr/ubq/

  • Vitek, O. (2005) PhD Dissertation, Department of Statistics, Purdue University

  • Vitek O., Bailey-Kellogg C., Craig B., Kuliniewicz P., Vitek J. (2005) Bioinformatics 21(Suppl 2):ii230–ii236

    Article  Google Scholar 

  • Vitek, O., Vitek, J., Craig, B. and Bailey-Kellogg, C. (2004) Stat. Appl. Genet. Mol. Biol. 3, Article 6. Available at: http://www.bepress.com/sagmb/vol3/iss1/art6

  • Wan Y., Jardetzky O. (2002) J. Am. Chem. Soc. 124:14075–14084

    Article  Google Scholar 

  • Wan X., Tegos T., Lin G. (2004) J. Bioinform. Comp. Biol. 2:747–764

    Article  Google Scholar 

  • Wang, J., Wang, T., Zuiderweg, E. and Crippen, G. (2005) J. Bioinform. Comp. Biol., 33, 261–279

    Google Scholar 

  • Wüthrich K. (2003) Angew. Chem.-Int. Edit. 42:3340–3363

    Article  Google Scholar 

  • Zhang H., Neal S., Wishart D.S. (2003) J. Biomol. NMR 25:173–195

    Article  Google Scholar 

  • Zimmerman D.E., Kulikowski C.A., Huang Y., Feng W., Tashiro M., Shimotakahara S.S., Chien C., Powers R., Montelione G.T. (1997) J. Mol. Biol. 269:592–610

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thanks Dr. Post, Purdue University, for providing the experimental data sets, Drs. Jung and Zweckstetter, Max Plank Institute for Biophysical Chemistry, for sharing their simulated data, and Drs. Moseley and Montelione, Rutgers University, for providing access to the AutoAssign data. This work was supported in part by a Purdue Dissertation Fellowship and by NSF grants EIA-9802068 and IIS-0502801.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olga Vitek.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vitek, O., Bailey-Kellogg, C., Craig, B. et al. Inferential backbone assignment for sparse data. J Biomol NMR 35, 187–208 (2006). https://doi.org/10.1007/s10858-006-9027-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10858-006-9027-8

Keywords

Navigation