Skip to main content
Log in

13C, 15N Resonance Assignment of Parts of the HET-s Prion Protein in its Amyloid Form

  • Article
  • Published:
Journal of Biomolecular NMR Aims and scope Submit manuscript

Abstract

The partial 15N and 13C solid-state NMR resonance assignment of the HET-s prion protein fragment 218–289 in its amyloid form is presented. It is based on experiments measured at MAS frequencies in the range of 20–40 kHz using exclusively adiabatic polarization-transfer schemes. The resonance assignment within each residue is based on two-dimensional 13C––13C correlation spectra utilizing the DREAM mixing scheme. The sequential linking of the assigned residues used a set of two- and three-dimensional 15N––13C correlation experiments. Almost all cross peaks visible in the spectra are assigned, but only resonances from 43 of the 78 amino-acid residues could be detected. The missing residues are thought to be highly disordered and/or highly dynamic giving rise to broad resonance lines that escaped detection in the experiments applied. The line widths of the observed resonances are narrow and comparable to line widths observed in micro-crystalline samples. The 43 assigned residues are located in two fragments of about 20 residues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

2D:

two-dimensional

3D:

three-dimensional

APHH:

adiabatic-passage Hartmann-Hahn

CP:

cross polarization

CW:

continuous wave

DREAM:

dipolar recoupling enhanced by amplitude modulation

HORROR:

homonuclear rotary resonance

MAS:

magic angle spinning

NMR:

nuclear magnetic resonance

NOE:

nuclear overhauser effect

PDSD:

proton-driven spin diffusion

R2T:

rotational resonance tickling

RFDR:

radio-frequency driven spin diffusion

TPPI:

time-proportional phase increment

TRIS:

tris(hydroxymethyl)aminomethane

XiX:

X inverse X

References

  • M. Baldus D.G. Geurts S. Hediger B.H. Meier (1996) J. Magn. Reson. Ser. A 118 140–144 Occurrence Handle10.1006/jmra.1996.0022

    Article  Google Scholar 

  • M. Baldus B.H. Meier (1996) J. Magn. Reson. Ser. A 121 65–69 Occurrence Handle10.1006/jmra.1996.0137

    Article  Google Scholar 

  • M. Baldus A.T. Petkova J. Herzfeld R.G. Griffin (1998) Mol. Phys. 95 1197–1207 Occurrence Handle10.1080/002689798166215

    Article  Google Scholar 

  • A. Balguerie S. Dos Reis C. Ritter S. Chaignepain B. Coulary-Salin V. Forge K. Bathany I. Lascu J.-M. Schmitter R. Riek S.J. Saupe (2003) EMBO J. 22 2071–2081 Occurrence Handle10.1093/emboj/cdg213

    Article  Google Scholar 

  • A.E. Bennett J.H. Ok R.G. Griffin S. Vega (1992) J. Chem. Phys. 96 8624–8627 Occurrence Handle1992JChPh..96.8624B

    ADS  Google Scholar 

  • A. Bockmann A. Lange A. Galinier S. Luca N. Giraud M. Juy H. Heise R. Montserret F. Penin M. Baldus (2003) J. Biomol. NMR 27 323–339

    Google Scholar 

  • A. Brinkmann M. Eden M.H. Levitt (2000) J. Chem. Phys. 112 8539–8554 Occurrence Handle10.1063/1.481458 Occurrence Handle2000JChPh.112.8539B

    Article  ADS  Google Scholar 

  • M. Carravetta M. Eden X. Zhao A. Brinkmann M.H. Levitt (2000) Chem. Phys. Lett. 321 205–215 Occurrence Handle10.1016/S0009-2614(00)00340-7

    Article  Google Scholar 

  • F. Castellani B. Rossum Particlevan A. Diehl M. Schubert K. Rehbein H. Oschkinat (2002) Nature 420 98–102 Occurrence Handle10.1038/nature01070 Occurrence Handle2002Natur.420...98C

    Article  ADS  Google Scholar 

  • F. Castellani B.J. Rossum Particlevan A. Diehl K. Rehbein H. Oschkinat (2003) Biochemistry 42 11476–11483 Occurrence Handle10.1021/bi034903r

    Article  Google Scholar 

  • P.R. Costa B.Q. Sun R.G. Griffin (1997) J. Am. Chem. Soc. 119 10821–10830

    Google Scholar 

  • V. Coustou-Linares M.-L. Maddelein J. Begueret S.J. Saupe (2001) Mol. Microbiol. 42 1325–1335 Occurrence Handle10.1046/j.1365-2958.2001.02707.x

    Article  Google Scholar 

  • A. Detken E.H. Hardy M. Ernst M. Kainosho T. Kawakami S. Aimoto B.H. Meier (2001) J. Biomol. NMR 20 203–221 Occurrence Handle10.1023/A:1011212100630

    Article  Google Scholar 

  • A. Detken E.H. Hardy M. Ernst B.H. Meier (2002) Chem. Phys. Lett. 356 298–304 Occurrence Handle10.1016/S0009-2614(02)00335-4

    Article  Google Scholar 

  • S. Dos Reis B. Coulary-Salin V. Forge I. Lascu J. Begueret S.J. Saupe (2002) J. Biol. Chem. 277 5703–5706 Occurrence Handle10.1074/jbc.M110183200

    Article  Google Scholar 

  • W.L. Earl D.L. VanDerHart (1982) J. Magn. Reson. 48 35–54

    Google Scholar 

  • M. Ernst A. Detken A. Bockmann B.H. Meier (2003) J. Am. Chem. Soc. 125 15807–15810 Occurrence Handle10.1021/ja0369966

    Article  Google Scholar 

  • A.J.v. Gammeren F.B. Hulsbergen J.G. Hollander H.J.M.d. Groot (2005) J. Biomol. NMR 31 279–293 Occurrence Handle10.1007/s10858-005-1604-8

    Article  Google Scholar 

  • N.L. Glass D. Jacobson P. Shiu (1997) Annu. Rev. Genet. 34 165–186

    Google Scholar 

  • R.K. Harris E.D. Becker S.M. Cabral de Menezes R. Goodfellow P. Granger (2002) Magn. Reson. Chem. 40 489–505

    Google Scholar 

  • S. Hediger B.H. Meier R.R. Ernst (1995) Chem. Phys. Lett. 240 449 Occurrence Handle10.1016/0009-2614(95)00505-X

    Article  Google Scholar 

  • S. Hediger B.H. Meier N.D. Kurur G. Bodenhausen R.R. Ernst (1994) Chem. Phys. Lett. 223 283–288 Occurrence Handle10.1016/0009-2614(94)00470-6

    Article  Google Scholar 

  • M. Hong (1999) J. Biomol. NMR 15 1–14 Occurrence Handle10.1023/A:1008334204412

    Article  Google Scholar 

  • T.I. Igumenova A.E. McDermott K.W. Zilm R.W. Martin E.K. Paulson A.J. Wand (2004) J. Am. Chem. Soc. 126 6720–6727

    Google Scholar 

  • T.I. Igumenova A.J. Wand A.E. McDermott (2004) J. Am. Chem. Soc. 126 5323–5331

    Google Scholar 

  • Y. Ishii R. Tycko (2000) J. Am. Chem. Soc. 122 1443–1455

    Google Scholar 

  • C.P. Jaroniec C.E. MacPhee V.S. Bajaj M.T. McMahon C.M. Dobson R.G. Griffin (2004) PNAS 101 711–716 Occurrence Handle10.1073/pnas.0304849101 Occurrence Handle2004PNAS..101..711J

    Article  ADS  Google Scholar 

  • R.L.J. Keller (2004) The Computer Aided Resonance Assignment Tutorial Cantina Verlag Goldau

    Google Scholar 

  • A. Lange S. Becker K. Seidel K. Giller O. Pongs M. Baldus (2005) Angew. Chem.-Int. Edit. 44 2089–2092

    Google Scholar 

  • M.L. Maddelein S. Dos Reis S. Duvezin-Caubet B. Coulary-Salin S.J. Saupe (2002) Proc. Natl. Acad. Sci. U.S.A 99 7402–7407 Occurrence Handle10.1073/pnas.072199199 Occurrence Handle2002PNAS...99.7402M

    Article  ADS  Google Scholar 

  • Marion, D. and Wuthrich, K. (1983) Biochem. Biophys. Res. Commun., 967–974

  • C.R. Morcombe K.W. Zilm (2003) J. Magn. Reson. 162 479–486 Occurrence Handle10.1016/S1090-7807(03)00082-X Occurrence Handle2003JMagR.162..479M

    Article  ADS  Google Scholar 

  • J. Pauli M. Baldus B. Rossum Particlevan H. Groot Particlede H. Oschkinat (2001) Chembiochem 2 272–281 Occurrence Handle10.1002/1439-7633(20010401)2:4<272::AID-CBIC272>3.0.CO;2-2

    Article  Google Scholar 

  • A.T. Petkova M. Baldus M. Belenky M. Hong R.G. Griffin J. Herzfeld (2003) J. Magn. Reson. 160 1–12 Occurrence Handle10.1016/S1090-7807(02)00137-4 Occurrence Handle2003JMagR.160....1P

    Article  ADS  Google Scholar 

  • A.T. Petkova G. Buntkowsky F. Dyda R.D. Leapman W.M. Yau R. Tycko (2004) J. Mol. Biol. 335 247–260 Occurrence Handle10.1016/j.jmb.2003.10.044

    Article  Google Scholar 

  • C.M. Rienstra M. Hohwy M. Hong R.G. Griffin (2000) J. Am. Chem. Soc. 122 10979–10990 Occurrence Handle10.1021/ja001092v

    Article  Google Scholar 

  • C. Ritter M.L. Maddelein A.B. Siemer T. Luhrs M. Ernst B.H. Meier S.J. Saupe R. Riek (2005) Nature 435 844–848 Occurrence Handle10.1038/nature03793 Occurrence Handle2005Natur.435..844R

    Article  ADS  Google Scholar 

  • Samoson, A., Tuherm, T., Past, J., Reinhold, A., Anupold, T. and Heinmaa N. (2005) In New Techniques in Solid-State NMR, Vol. 246, pp. 15–31

  • S.J. Saupe (2000) Microbiol. Mol. Biol. Rev. 64 489–502

    Google Scholar 

  • S.K. Straus T. Bremi R.R. Ernst (1998) J. Biomol. NMR 12 39–50 Occurrence Handle10.1023/A:1008280716360

    Article  Google Scholar 

  • K. Takegoshi K. Nomura T. Terao (1995) Chem. Phys. Lett. 232 424–428 Occurrence Handle10.1016/0009-2614(94)01399-G

    Article  Google Scholar 

  • K. Takegoshi K. Nomura T. Terao (1997) J. Magn. Reson. 127 206–216 Occurrence Handle10.1006/jmre.1997.1191

    Article  Google Scholar 

  • R. Tycko (2004) Curr. Opin. Struct. Biol. 14 96–103 Occurrence Handle10.1016/j.sbi.2003.12.002

    Article  Google Scholar 

  • B.J. Rossum Particlevan F. Castellani J. Pauli K. Rehbein J. Hollander H.J.M. Groot Particlede H. Oschkinat (2003) J. Biomol. NMR 25 217–223

    Google Scholar 

  • R. Verel M. Baldus M. Ernst B.H. Meier (1998) Chem. Phys. Lett. 287 421–428 Occurrence Handle10.1016/S0009-2614(98)00172-9

    Article  Google Scholar 

  • R. Verel M. Ernst B.H. Meier (2001) J. Magn. Reson. 150 81–99 Occurrence Handle10.1006/jmre.2001.2310 Occurrence Handle2001JMagR.150...81V

    Article  ADS  Google Scholar 

  • S.G. Zech A.J. Wand A.E. McDermott (2005) J. Am. Chem. Soc. 127 8618–8626 Occurrence Handle10.1021/ja0503128

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Siemer, A.B., Ritter, C., Steinmetz, M.O. et al. 13C, 15N Resonance Assignment of Parts of the HET-s Prion Protein in its Amyloid Form. J Biomol NMR 34, 75–87 (2006). https://doi.org/10.1007/s10858-005-5582-7

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10858-005-5582-7

Keywords

Navigation