Skip to main content
Log in

Adiabatic-passage cross polarization in N-15 NMR spectroscopy of peptides weakly associated to phospholipids: Determination of large RDC

  • Published:
Journal of Biomolecular NMR Aims and scope Submit manuscript

Abstract

Structural information can be extracted from one-bond residual dipolar couplings (RDC) measured in NMR spectra of systems in field-ordered media. RDC can be on the order of J-couplings if the anisotropy of alignment is ~ 10−2, 10-fold stronger than that typically used for structural studies of water-soluble proteins. In such systems the performance of 1H→ 15N polarization transfer methods of the INEPT type is not satisfactory. In this study we show the effectiveness of adiabatic-passage cross-polarization (APCP) in transferring the 1H→ 15N polarization in the bicelle-associated peptide Leucine Enkephalin (Lenk). APCP is efficient both in static samples and in samples spun at the magic angle (MAS) or any other angle of the spinning axis to the magnetic field (variable-angle spinning, VAS). The anisotropic spectrum of an aligned static sample and the isotropic spectrum of the sample under MAS provide a set of possible values for the 1H–15N RDC of phospholipid-associated Lenk. The unambiguous determination of the 1H–15N RDC was accomplished by means of VAS experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • R.D. Bertrand W.B. Moniz A.N. Garroway G.C. Chingas (1978) J. Am. Chem. Soc. 100 5227–5229

    Google Scholar 

  • F.A. Bovey (1988) Nuclear Magnetic Resonance Spectroscopy Academic Press San Diego

    Google Scholar 

  • R. Bruschweiler R.R. Ernst (1992) J. Chem. Phys. 96 1758–1766

    Google Scholar 

  • D.P. Burum M. Linder R.R. Ernst (1981) J. Magn. Reson 44 173–188

    Google Scholar 

  • G.C. Chingas A.N. Garroway W.B. Monitz R.D. Bertrand (1980) J. Am. Chem. Soc. 102 2526–2528

    Google Scholar 

  • M. Ernst B.H. Meier (2002) NoChapterTitle D.M. Grant R.K. Harris (Eds) Encyclopedia of Nuclear Magnetic Resonance John Wiley & Sons Chichester 23–32

    Google Scholar 

  • K.J. Glover J.A. Whiles M.J. Wood G. Melacini E.A. Komives R.R. Vold (2001) Biochemistry 40 13137–13142

    Google Scholar 

  • S.R. Hartmann E.L. Hahn (1962) Phys. Rev. 128 2042–2046

    Google Scholar 

  • S. Hediger B.H. Meier R.R. Ernst (1995) Chem. Phys. Lett. 240 449–456

    Google Scholar 

  • S. Hediger B.H. Meier N.D. Kurur G. Bodenhausen R.R. Ernst (1994) Chem. Phys. Lett. 223 283–288

    Google Scholar 

  • K.P. Howard S.J. Opella (1996) J. Magn. Reson. Ser. B 112 91–94

    Google Scholar 

  • N. Khaneja B. Luy S.J. Glaser (2003) Proc. Natl. Acad. Sci. USA 100 13162–13166

    Google Scholar 

  • M.H. Levitt (1991) J. Chem. Phys. 94 30–38

    Google Scholar 

  • D.H. Live D.G. Davis W.C. Agosta D. Cowburn (1984) J. Am. Chem. Soc. 106 1939–1943

    Google Scholar 

  • J.A. Losonczi J.H. Prestegard (1998) Biochemistry 37 706–716

    Google Scholar 

  • J.A. Losonczi M. Andrec M.W.F. Fischer J.H. Prestegard (1999) J. Magn. Reson. 138 334–342

    Google Scholar 

  • I. Marcotte F. Separovic M. Auger S.M. Gagne (2004) Biophys. J. 86 1587–1600

    Google Scholar 

  • M. Mehring (1983) Principles of High Resolution NMR in Solids Springer Berlin

    Google Scholar 

  • G.A. Morris R. Freeman (1979) J. Am. Chem. Soc. 101 760–762

    Google Scholar 

  • S.J. Opella F.M. Marassi J.J. Gesell A.P. Valente Y. Kim M. Oblatt-Montal M. Montal (1999) Nat. Struct. Biol. 6 374–379

    Google Scholar 

  • A. Pines M.G. Gibby J.S. Waugh (1972) J. Chem. Phys. 56 1776–1777

    Google Scholar 

  • R.S. Prosser H. Bryant R.G. Bryant R.R. Vold (1999) J. Magn. Reson. 141 256–260

    Google Scholar 

  • R. Riek G. Wider K. Pervushin K. Wüthrich (1999) Proc. Natl. Acad. Sci. USA 96 4918–4923

    Google Scholar 

  • F. Rinaldi M.F. Lin M.J. Shapiro M. Petersheim (1997) Biophys. J. 73 IssueID6 3337–3348

    Google Scholar 

  • C.R. Sanders G.C. Landis (1994) J. Am. Chem. Soc. 116 6470–6471

    Google Scholar 

  • C.R. Sanders G.C. Landis (1995) Biochemistry 34 4030–4040

    Google Scholar 

  • A. Saupe (1964) Z. Naturforschung 19a 161

    Google Scholar 

  • A.J. Shaka J. Keeler R. Freeman (1983) J. Magn. Reson 53 313–340

    Google Scholar 

  • F. Tian J.A. Losonczi M.W.F. Fischer J.H. Prestegard (1999) J. Biomol. NMR 15 145–150

    Google Scholar 

  • S. Wimperis G. Bodenhausen (1989) Mol. Phys. 66 897–919

    Google Scholar 

  • C.H. Wu A. Ramamoorthy L.M. Gierasch S.J. Opella (1995) J. Am. Chem. Soc. 117 6148–6149

    Google Scholar 

  • G. Zandomeneghi M. Tomaselli J.D. van Beek B.H. Meier (2001) J. Am. Chem. Soc. 123 910–913

    Google Scholar 

  • G. Zandomeneghi M. Tomaselli P.T.F. Williamson B.H. Meier (2003a) J. Biomol. NMR 25 113–123

    Google Scholar 

  • G. Zandomeneghi P.T.F. Williamson A. Hunkeler B.H. Meier (2003b) J. Biomol. NMR 25 125–132

    Google Scholar 

  • S. Zhang (1994) J. Magn. Reson. Ser. A 110 73–76

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Beat H. Meier.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zandomeneghi, G., Meier, B.H. Adiabatic-passage cross polarization in N-15 NMR spectroscopy of peptides weakly associated to phospholipids: Determination of large RDC. J Biomol NMR 30, 303–309 (2004). https://doi.org/10.1007/s10858-004-3097-2

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10858-004-3097-2

Keywords

Navigation