Skip to main content

Advertisement

Log in

Bioglass/PLGA associated to photobiomodulation: effects on the healing process in an experimental model of calvarial bone defect

  • Biomaterials Synthesis and Characterization
  • Original Research
  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Bioactive glasses (BG) are known for their ability to bond to bone tissue. However, in critical situations, even the osteogenic properties of BG may be not enough to induce bone consolidation. Thus, the enrichment of BG with polymers such as Poly (D, L-lactic-co-glycolic) acid (PLGA) and associated to photobiomodulation (PBM) may be a promising strategy to promote bone tissue healing. The aim of the present study was to investigate the in vivo performance of PLGA supplemented BG, associated to PBM therapy, using an experimental model of cranial bone defect in rats. Rats were distributed in 4 different groups (Bioglass, Bioglass/PBM, Bioglas/PLGA and BG/PLGA/PBM). After the surgical procedure to induce cranial bone defects, the pre-set samples were implanted and PBM treatment (low-level laser therapy) started (808 nm, 100 mW, 30 J/cm2). After 2 and 6 weeks, animals were euthanized, and the samples were retrieved for the histopathological, histomorphometric, picrosirius red staining and immunohistochemistry analysis. At 2 weeks post-surgery, it was observed granulation tissue and areas of newly formed bone in all experimental groups. At 6 weeks post-surgery, BG/PLGA (with or without PBM) more mature tissue around the biomaterial particles. Furthermore, there was a higher deposition of collagen for BG/PLGA in comparison with BG/PLGA/PBM, at second time-point. Histomorphometric analysis demonstrated higher values of BM.V/TV for BG compared to BG/PLGA (2 weeks post-surgery) and N.Ob/T.Ar for BG/PLGA compared to BG and BG/PBM (6 weeks post-surgery). This current study concluded that the use of BG/PLGA composites, associated or not to PBM, is a promising strategy for bone tissue engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Akter F. Tissue engineering made easy. London, UK: Academic Press; 2016.

    Google Scholar 

  2. Patel S, Caldwell JM, Doty SB, Levine WN, Rodeo S, Soslowsky LJ, et al. Integrating soft and hard tissues via interface tissue engineering. J Orthop Res: Off Publ Orthop Res Soc. 2017. https://doi.org/10.1002/jor.23810.

    Article  Google Scholar 

  3. Hench LL, Polak JM. Third-generation biomedical materials. Science 2002;295:1014. https://doi.org/10.1126/science.1067404.

    Article  CAS  Google Scholar 

  4. Fernandes KR, Magri AMP, Kido HW, Parisi JR, Assis L, Fernandes KPS, et al. Biosilicate/PLGA osteogenic effects modulated by laser therapy: In vitro and in vivo studies. J Photochemistry Photobiol B Biol. 2017;173:258. https://doi.org/10.1016/j.jphotobiol.2017.06.002.

    Article  CAS  Google Scholar 

  5. Felix Lanao RP, Bosco R, Leeuwenburgh SC, Kersten-Niessen MJ, Wolke JG, van den Beucken JJ, et al. RANKL delivery from calcium phosphate containing PLGA microspheres. J Biomed Mater Res Part A. 2013;101:3123. https://doi.org/10.1002/jbm.a.34623.

    Article  CAS  Google Scholar 

  6. Felix Lanao RP, Leeuwenburgh SC, Wolke JG, Jansen JA. In vitro degradation rate of apatitic calcium phosphate cement with incorporated PLGA microspheres. Acta Biomaterialia. 2011;7:3459. https://doi.org/10.1016/j.actbio.2011.05.036.

    Article  CAS  Google Scholar 

  7. Hench LL. The story of Bioglass. J Mater Sci Mater Med. 2006;17:967. https://doi.org/10.1007/s10856-006-0432-z.

    Article  CAS  Google Scholar 

  8. Gerhardt LC, Boccaccini AR. Bioactive Glass and Glass-Ceramic Scaffolds for Bone Tissue Engineering. Materials 2010;3:3867. https://doi.org/10.3390/ma3073867.

    Article  CAS  Google Scholar 

  9. Xynos ID, Edgar AJ, Buttery LDK, Hench LL, Polak JM. Ionic products of bioactive glass dissolution increase proliferation of human osteoblasts and induce insulin-like growth factor II mRNA expression and protein synthesis. Biochemical Biophysical Res Commun. 2000;276:461. https://doi.org/10.1006/bbrc.2000.3503.

    Article  CAS  Google Scholar 

  10. Navarro M, Michiardi A, Castano O, Planell JA. Biomaterials in orthopaedics. J R Soc Interface 2008;5:1137. https://doi.org/10.1098/rsif.2008.0151.

    Article  Google Scholar 

  11. Fernandes KR, Magri AMP, Kido HW, Ueno F, Assis L, Fernandes KPS. et al.Characterization and biological evaluation of the introduction of PLGA into biosilicate(R).J Biomed Mater Res. Part B. Appl Biomater. 2017;105:1063. https://doi.org/10.1002/jbm.b.33654.

    Article  CAS  Google Scholar 

  12. Karageorgiou V, Kaplan D. Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials 2005;26:5474. https://doi.org/10.1016/j.biomaterials.2005.02.002.

    Article  CAS  Google Scholar 

  13. Day RM. Bioactive glass stimulates the secretion of angiogenic growth factors and angiogenesis in vitro. Tissue Eng. 2005;11:768. https://doi.org/10.1089/ten.2005.11.768.

    Article  Google Scholar 

  14. Coelho RC, Zerbinati LP, de Oliveira MG, Weber JB. Systemic effects of LLLT on bone repair around PLLA-PGA screws in the rabbit tibia. Lasers Med Sci. 2014;29:703. https://doi.org/10.1007/s10103-013-1384-4.

    Article  Google Scholar 

  15. Pinheiro AL, Limeira Junior Fde A, Gerbi ME, Ramalho LM, Marzola C, Ponzi EA, et al. Effect of 830-nm laser light on the repair of bone defects grafted with inorganic bovine bone and decalcified cortical osseus membrane. J Clin Laser Med Surg. 2003;21:301. https://doi.org/10.1089/104454703322564523.

    Article  Google Scholar 

  16. Barbos Pinheiro AL, Limeira Junior FA, Marquez Gerbi ME, Pedreira Ramalho LM, Marzola C, Carneiro Ponzi EA, et al. Effect of 830-nm laser light on the repair of bone defects grafted with inorganic bovine bone and decalcified cortical osseous membrane. J Clin Laser Med Surg. 2003;21:383. https://doi.org/10.1089/104454703322650202.

    Article  Google Scholar 

  17. Huang YY, Sharma SK, Carroll J, Hamblin MR. Biphasic dose response in low level light therapy - an update. Dose-response : a Publ Int Hormesis Soc. 2011;9:602. https://doi.org/10.2203/dose-response.11-009.Hamblin.

    Article  CAS  Google Scholar 

  18. Renno AC, McDonnell PA, Parizotto NA, Laakso EL. The effects of laser irradiation on osteoblast and osteosarcoma cell proliferation and differentiation in vitro. Photomed Laser Surg. 2007;25:275. https://doi.org/10.1089/pho.2007.2055.

    Article  CAS  Google Scholar 

  19. Assis L, Moretti AI, Abrahao TB, de Souza HP, Hamblin MR, Parizotto NA. Low-level laser therapy (808 nm) contributes to muscle regeneration and prevents fibrosis in rat tibialis anterior muscle after cryolesion. Lasers Med Sci. 2013;28:947. https://doi.org/10.1007/s10103-012-1183-3.

    Article  Google Scholar 

  20. Barbosa D, de Souza RA, Xavier M, da Silva FF, Arisawa EA, Villaverde AG. Effects of low-level laser therapy (LLLT) on bone repair in rats: optical densitometry analysis. Lasers Med Sci. 2013;28:651. https://doi.org/10.1007/s10103-012-1125-0.

    Article  Google Scholar 

  21. Pires Oliveira DA, de Oliveira RF, Zangaro RA, Soares CP. Evaluation of low-level laser therapy of osteoblastic cells. Photomed Laser Surg. 2008;26:401. https://doi.org/10.1089/pho.2007.2101.

    Article  Google Scholar 

  22. Favaro-Pipi E, Feitosa SM, Ribeiro DA, Bossini P, Oliveira P, Parizotto NA, et al. Comparative study of the effects of low-intensity pulsed ultrasound and low-level laser therapy on bone defects in tibias of rats. Lasers Med Sci. 2010;25:727. https://doi.org/10.1007/s10103-010-0772-2.

    Article  Google Scholar 

  23. Bossini PS, Renno AC, Ribeiro DA, Fangel R, Ribeiro AC, Lahoz Mde A, et al. Low level laser therapy (830 nm) improves bone repair in osteoporotic rats: similar outcomes at two different dosages. Exp Gerontol. 2012;47:136. https://doi.org/10.1016/j.exger.2011.11.005.

    Article  Google Scholar 

  24. Renno AC, McDonnell PA, Crovace MC, Zanotto ED, Laakso L. Effect of 830 nm laser phototherapy on osteoblasts grown in vitro on Biosilicate scaffolds. Photomed Laser Surg. 2010;28:131. https://doi.org/10.1089/pho.2009.2487.

    Article  Google Scholar 

  25. Pinto KN, Tim CR, Crovace MC, Matsumoto MA, Parizotto NA, Zanotto ED, et al. Effects of biosilicate((R)) scaffolds and low-level laser therapy on the process of bone healing. Photomed Laser Surg. 2013;31:252. https://doi.org/10.1089/pho.2012.3435.

    Article  Google Scholar 

  26. Luvizuto ER, Queiroz TP, Margonar R, Panzarini SR, Hochuli-Vieira E, Okamoto T, et al. Osteoconductive properties of beta-tricalcium phosphate matrix, polylactic and polyglycolic acid gel, and calcium phosphate cement in bone defects. J Craniofacial Surg. 2012;23:e430. https://doi.org/10.1097/SCS.0b013e31825e4abf.

    Article  Google Scholar 

  27. Kubota T, Hasuike A, Ozawa Y, Yamamoto T, Tsunori K, Yamada Y, et al. Regenerative capacity of augmented bone in rat calvarial guided bone augmentation model. J Periodontal Implant Sci. 2017;47:77. https://doi.org/10.5051/jpis.2017.47.2.77.

    Article  Google Scholar 

  28. Magri AM, Fernandes KR, Assis L, Mendes NA, da Silva Santos AL, de Oliveira, Dantas E, et al. Photobiomodulation and bone healing in diabetic rats: evaluation of bone response using a tibial defect experimental model. Lasers Med Sci. 2015;30:1949. https://doi.org/10.1007/s10103-015-1789-3.

    Article  Google Scholar 

  29. Magri AMP, Fernandes KR, Ueno FR, Kido HW, Da Silva AC, Braga FJC, et al. Osteoconductive properties of two different bioactive glass forms (powder and fiber) combined with collagen. Appl Surf Sci. 2017;423:557.

    Article  CAS  Google Scholar 

  30. Andrade GB, Montes G, Conceição G, Saldiva PHN. Use of the Picrosirius-polarization method to age fibrotic lesions in the hepatic granulomas produced in experimental murine schistosomiasis. Pathog Glob Health 1999;93:265. https://doi.org/10.1080/00034989958528.

    Article  Google Scholar 

  31. Garavello-Freitas I, Baranauskas V, Joazeiro PP, Padovani CR, Dal Pai-Silva M, da Cruz-Hofling MA. Low-power laser irradiation improves histomorphometrical parameters and bone matrix organization during tibia wound healing in rats. J Photochemistry Photobiol B, Biol. 2003;70:81.

    Article  CAS  Google Scholar 

  32. Bossini PS, Renno AC, Ribeiro DA, Fangel R, Peitl O, Zanotto ED, et al. Biosilicate(R) and low-level laser therapy improve bone repair in osteoporotic rats. J Tissue Eng Regenerative Med. 2011;5:229. https://doi.org/10.1002/term.309.

    Article  Google Scholar 

  33. Tim CR, Pinto KN, Rossi BR, Fernandes K, Matsumoto MA, Parizotto NA, et al. Low-level laser therapy enhances the expression of osteogenic factors during bone repair in rats. Lasers Med Sci. 2014;29:147. https://doi.org/10.1007/s10103-013-1302-9.

    Article  Google Scholar 

  34. O’Brien FJ. Biomaterials & scaffolds for tissue engineering. Mater Today 2011;14:88. https://doi.org/10.1016/S1369-7021(11)70058-X.

    Article  CAS  Google Scholar 

  35. Day RM, Boccaccini AR, Shurey S, Roether JA, Forbes A, Hench LL, et al. Assessment of polyglycolic acid mesh and bioactive glass for soft-tissue engineering scaffolds. Biomaterials 2004;25:5857. https://doi.org/10.1016/j.biomaterials.2004.01.043.

    Article  Google Scholar 

  36. Filipowska J, Pawlik J, Cholewa-Kowalska K, Tylko G, Pamula E, Niedzwiedzki L, et al. Incorporation of sol-gel bioactive glass into PLGA improves mechanical properties and bioactivity of composite scaffolds and results in their osteoinductive properties. Biomed Mater. 2014;9:065001. https://doi.org/10.1088/1748-6041/9/6/065001.

    Article  Google Scholar 

  37. Pamula E, Kokoszka J, Cholewa-Kowalska K, Laczka M, Kantor L, Niedzwiedzki L, et al. Degradation, bioactivity, and osteogenic potential of composites made of PLGA and two different sol-gel bioactive glasses. Ann Biomed Eng. 2011;39:2114. https://doi.org/10.1007/s10439-011-0307-4.

    Article  Google Scholar 

  38. Sarvestani FK, Dehno NS, Nazhvani SD, Bagheri MH, Abbasi S, Khademolhosseini Y, et al. Effect of low-level laser therapy on fracture healing in rabbits. Laser Ther. 2017;26:189. https://doi.org/10.5978/islsm.17-OR-14.

    Article  Google Scholar 

  39. Tim CR, Bossini PS, Kido HW, Malavazi I, von Zeska Kress MR, Carazzolle MF, et al. Effects of low-level laser therapy on the expression of osteogenic genes during the initial stages of bone healing in rats: a microarray analysis. Lasers Med Sci. 2015;30:2325. https://doi.org/10.1007/s10103-015-1807-5.

    Article  Google Scholar 

  40. Oliveira P, Fernandes KR, Sperandio EF, Pastor FA, Nonaka KO, Parizotto NA, et al. Comparative study of the effects of low-level laser and low-intensity ultrasound associated with biosilicate((r)) on the process of bone repair in the rat Tibia. Rev Brasileira De Ortop. 2012;47:102. https://doi.org/10.1016/S2255-4971(15)30352-9.

    Article  Google Scholar 

  41. Pinheiro AL, Santos NR, Oliveira PC, Aciole GT, Ramos TA, Gonzalez TA, et al. The efficacy of the use of IR laser phototherapy associated to biphasic ceramic graft and guided bone regeneration on surgical fractures treated with miniplates: a Raman spectral study on rabbits. Lasers Med Sci. 2013;28:513. https://doi.org/10.1007/s10103-012-1096-1.

    Article  Google Scholar 

  42. Renno AC, Nejadnik MR, van de Watering FC, Crovace MC, Zanotto ED, Hoefnagels JP, et al. Incorporation of bioactive glass in calcium phosphate cement: material characterization and in vitro degradation. J Biomed Mater Res Part A. 2013;101:2365. https://doi.org/10.1002/jbm.a.34531.

    Article  Google Scholar 

  43. Renno AC, van de Watering FC, Nejadnik MR, Crovace MC, Zanotto ED, Wolke JG, et al. Incorporation of bioactive glass in calcium phosphate cement: An evaluation. Acta Biomaterialia. 2013;9:5728. https://doi.org/10.1016/j.actbio.2012.11.009.

    Article  CAS  Google Scholar 

  44. Oh JH, Kim HJ, Kim TI, Woo KM. Comparative evaluation of the biological properties of fibrin for bone regeneration. BMB Rep. 2014;47:110.

    Article  Google Scholar 

  45. Marsell R, Einhorn TA. The biology of fracture healing. Injury 2011;42:551. https://doi.org/10.1016/j.injury.2011.03.031.

    Article  Google Scholar 

  46. Rizwan M, Hamdi M, Basirun WJ. Bioglass(R) 45S5-based composites for bone tissue engineering and functional applications. J Biomed Mater Res Part A. 2017;105:3197. https://doi.org/10.1002/jbm.a.36156.

    Article  Google Scholar 

  47. Skondra FG, Koletsi D, Eliades T, Farmakis ETR. The effect of low-level laser therapy on bone healing after rapid maxillary expansion: a systematic review. Photomed Laser Surg. 2018;36:61. https://doi.org/10.1089/pho.2017.4278.

    Article  Google Scholar 

  48. Santinoni CD, Oliveira HF, Batista VE, Lemos CA, Verri FR. Influence of low-level laser therapy on the healing of human bone maxillofacial defects: A systematic review. J Photochemistry Photobiol B Biol. 2017;169:83. https://doi.org/10.1016/j.jphotobiol.2017.03.004.

    Article  CAS  Google Scholar 

  49. Noba C, Mello-Moura ACV, Gimenez T, Tedesco TK, Moura-Netto C. Laser for bone healing after oral surgery: systematic review. Lasers Med Sci. 2018;33:667. https://doi.org/10.1007/s10103-017-2400-x.

    Article  Google Scholar 

  50. Huang YY, Chen AC, Carroll JD, Hamblin MR. Biphasic dose response in low level light therapy. Dose-response: A Publ Int Hormesis Soc. 2009;7:358. https://doi.org/10.2203/dose-response.09-027.Hamblin.

    Article  Google Scholar 

  51. Oliveira P, Ribeiro DA, Pipi EF, Driusso P, Parizotto NA, Renno AC. Low level laser therapy does not modulate the outcomes of a highly bioactive glassceramic (Biosilicate) on bone consolidation in rats. J Mater Sci Mater Med. 2010;21:1379. https://doi.org/10.1007/s10856-009-3945-4.

    Article  CAS  Google Scholar 

  52. Li G, Hu J, Chen H, Chen L, Zhang N, Zhao L, et al. Enamel matrix derivative enhances the proliferation and osteogenic differentiation of human periodontal ligament stem cells on the titanium implant surface. Organogenesis 2017;13:103. https://doi.org/10.1080/15476278.2017.1331196.

    Article  Google Scholar 

  53. Hienz SA, Paliwal S, Ivanovski S. Mechanisms of bone resorption in periodontitis. J Immunol Res. 2015;2015:615486. https://doi.org/10.1155/2015/615486.

    Article  Google Scholar 

  54. de Vernejoul MC. Sclerosing bone disorders. Best practice & research. Clin Rheumatol. 2008;22:71. https://doi.org/10.1016/j.berh.2007.12.011.

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge funding agencies FAPESP (grant number: 2014/20546-0) and CNPq for the financial support of this research and CAPES for scholarship to AMPM. In addition, the authors would like to thank Dr Ingrid Regina Avanzi for helping during some euthanasia of the animals and Prof. Dr Flavia de Oliveira and Hananiah Tardivo Quintana for assistance with picrosirius analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angela Maria Paiva Magri.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Magri, A.M.P., Fernandes, K.R., Kido, H.W. et al. Bioglass/PLGA associated to photobiomodulation: effects on the healing process in an experimental model of calvarial bone defect. J Mater Sci: Mater Med 30, 105 (2019). https://doi.org/10.1007/s10856-019-6307-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10856-019-6307-x

Navigation