Skip to main content
Log in

Exogenous hyaluronic acid and chondroitin sulfate crosslinking treatment for increasing the amount and stability of glycosaminoglycans in bioprosthetic heart valves

  • Clinical Applications of Biomaterials
  • Original Research
  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Glutaraldehyde (GLUT) crosslinked bioprosthetic heart valves (BHVs) might fail due to progressive degradation and calcification. GLUT cannot stabilize glycosaminoglycans (GAGs), which are important for BHVs’ life time. In this current study we developed a new BHVs preparation strategy using exogenous hyaluronic acid (HA)/chondroitin sulfate (CS) supplement and sodium trimetaphosphate (STP) crosslinking method. Exogenous HA and CS provide additional GAGs for pericardiums. STP could link two GAGs by reacting with hydroxyl groups in GAGs’ repeating polysaccharides units. The feeding ratios of HA/CS were optimized. The GAGs content and long-term stability in vitro, biocompatibility, the in vivo GAGs stability and anti-calcification potential of GLUT/HA/CS and STP treated pericardiums were characterized. We demonstrated that GLUT/HA/CS and STP treated pericardiums had sufficiently increased GAGs’ amount and stability and decreased calcification. This new exogenous hyaluronic acid/chondroitin sulfate supplement and sodium trimetaphosphate crosslinking strategy would be a promising method to make BHVs with better structural stability and anti-calcification properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Manji RA, et al. Porcine bioprosthetic heart valves: the next generation. Am Heart J. 2012;164(2):177–85.

    Article  Google Scholar 

  2. Rapoport HS, et al. Mechanisms of the in vivo inhibition of calcification of bioprosthetic porcine aortic valve cusps and aortic wall with triglycidylamine/mercapto bisphosphonate. Biomaterials. 2007;28(4):690–9.

    Article  CAS  Google Scholar 

  3. Hedayat M, Asgharzadeh H, Borazjani I. Platelet activation of mechanical versus bioprosthetic heart valves during systole. J Biomech. 2017;56:111–6.

    Article  Google Scholar 

  4. Human P, Zilla P. The possible role of immune responses in bioprosthetic heart valve failure. J Heart Valve Dis. 2001;10(4):460.

    CAS  Google Scholar 

  5. Zilla P, et al. Prosthetic heart valves: catering for the few. Biomaterials. 2008;29(4):385–406.

    Article  CAS  Google Scholar 

  6. Vyavahare N, et al. Mechanisms of bioprosthetic heart valve failure: fatigue causes collagen denaturation and glycosaminoglycan loss. J Biomed Mater Res. 1999;46(1):44.

    Article  CAS  Google Scholar 

  7. Tam H, et al. A novel crosslinking method for improved tear resistance andbiocompatibility of tissue based biomaterials. Biomaterials. 2015;66:83–91.

    Article  CAS  Google Scholar 

  8. Leong J, et al. Neomycin and carbodiimide crosslinking as an alternative to glutaraldehyde for enhanced durability of bioprosthetic heart valves. J Biomater Appl. 2013;27(8):948.

    Article  Google Scholar 

  9. Levy RJ, et al. Calcification of subcutaneously implanted type I collagen sponges. Effects of formaldehyde and glutaraldehyde pretreatments. Am J Pathol. 1986;122(1):71–82.

    CAS  Google Scholar 

  10. Golomb G, et al. The role of glutaraldehyde-induced cross-links in calcification of bovine pericardium used in cardiac-valve bioprostheses. Am J Pathol. 1987;127(1):122–30.

    CAS  Google Scholar 

  11. Bezuidenhout D, et al. The effects of cross-link density and chemistry on the calcification potential of diamine-extended glutaraldehyde-fixed bioprosthetic heart-valve materials. Biotechnol Appl Biochem. 2009;54:133–40.

    Article  CAS  Google Scholar 

  12. Jorge-Herrero E, et al. Biocompatibility and calcification of bovine pericardium employed for the construction of cardiac bioprostheses treated with different chemical crosslink methods. Artif Organs. 2010;34(5):168–76.

    Article  CAS  Google Scholar 

  13. Tripi DR, Vyavahare NR. Neomycin and pentagalloyl glucose enhanced cross-linking for elastin and glycosaminoglycans preservation in bioprosthetic heart valves. J Biomater Appl. 2014;28(28):757–66.

    Article  CAS  Google Scholar 

  14. Raghavan D, Simionescu DT, Vyavahare NR. Neomycin prevents enzyme-mediated glycosaminoglycan degradation in bioprosthetic heart valves. Biomaterials. 2007;28(18):2861.

    Article  CAS  Google Scholar 

  15. Raghavan D, Starcher BC, Vyavahare NR. Neomycin binding preserves extracellular matrix in bioprosthetic heart valves during in vitro cyclic fatigue and storage. Acta Biomater. 2009;5(4):983–92.

    Article  CAS  Google Scholar 

  16. Shah SR, Vyavahare NR. The effect of glycosaminoglycan stabilization on tissue buckling in bioprosthetic heart valves. Biomaterials. 2008;29(11):1645–53.

    Article  CAS  Google Scholar 

  17. Tripi DR, Vyavahare NR. Neomycin and pentagalloyl glucose enhanced cross-linking for elastin and glycosaminoglycans preservation in bioprosthetic heart valves. J Biomater Appl. 2014;28(5):757–66.

    Article  CAS  Google Scholar 

  18. Lovekamp J, Vyavahare N. Periodate‐mediated glycosaminoglycan stabilization in bioprosthetic heart valves. J Biomed Mater Res. 2001;56(4):478–86.

    Article  CAS  Google Scholar 

  19. Mercuri JJ, Lovekamp JJ. Glycosaminoglycan-targeted fixation for improved bioprosthetic heart valve stabilization. Biomaterials. 2007;28(26):496–503.

    Article  CAS  Google Scholar 

  20. Gao F, et al. Preparation and characterization of starch crosslinked with sodium trimetaphosphate and hydrolyzed by enzymes. Carbohydr Polym. 2014;103(1):310–8.

    Article  CAS  Google Scholar 

  21. Carbinatto FM, et al. Physical properties of pectin-high amylose starch mixtures cross-linked with sodium trimetaphosphate. Int J Pharm. 2012;423(2):281.

    Article  CAS  Google Scholar 

  22. Scott JE, Haigh M. Proteoglycan-type I collagen fibril interactions in bone and non-calcifying connective tissues. Biosci Rep. 1985;5(1):71–81.

    Article  CAS  Google Scholar 

  23. Lowther DA, Preston BN, Meyer FA. Isolation and properties of chondroitin sulphates from bovine heart valves. Biochem J. 1970;118(4):595–601.

    CAS  Google Scholar 

  24. Caballero A, et al. Evaluation of transcatheter heart valve biomaterials: biomechanical characterization of bovine and porcine pericardium. J Mech Behav Biomed Mater. 2017;75:486–94.

    Article  CAS  Google Scholar 

  25. Lovekamp JJ, et al. Stability and function of glycosaminoglycans in porcine bioprosthetic heart valves. Biomaterials. 2006;27(8):1507–18.

    Article  CAS  Google Scholar 

  26. Tam H. et al. Fixation of bovine pericardium-based tissue biomaterial with irreversible chemistry improves biochemical and biomechanical properties. J Cardiovasc Transl Res. 2017;10(2):194–205. https://doi.org/10.1007/s12265-017-9733-5.

    Article  CAS  Google Scholar 

  27. Jiang BPD, et al. Targeting heparin to collagen within extracellular matrix significantly reduces thrombogenicity and improves endothelialization of decellularized tissues. Biomacromolecules. 2016;17(12):3940.

    Article  CAS  Google Scholar 

  28. Li J, et al. A novel natural hirudin facilitated anti-clotting polylactide membrane via hydrogen bonding interaction. J Membr Sci. 2017;523:505–14.

    Article  CAS  Google Scholar 

  29. Cigliano A, et al. Fine structure of glycosaminoglycans from fresh and decellularized porcine cardiac valves and pericardium. Biochem Res Int. 2012;2012:979351.

    Article  CAS  Google Scholar 

  30. Jorgeherrero E, et al. Study of the calcification of bovine pericardium: analysis of the implication of lipids and proteoglycans. Biomaterials. 1991;12(7):683–9.

    Article  CAS  Google Scholar 

  31. Ohri R, et al. Hyaluronic acid grafting mitigates calcification of glutaraldehyde-fixed bovine pericardium. J Biomed Mater Res A. 2004;70A(2):328–34.

    Article  CAS  Google Scholar 

  32. Murata K. Acidic glycosaminoglycans in human heart valves. J Mol Cell Cardiol. 1981;13(3):281–92.

    Article  CAS  Google Scholar 

  33. Zhou J, et al. Impact of heart valve decellularization on 3-D ultrastructure, immunogenicity and thrombogenicity. Biomaterials. 2010;31(9):2549–54.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (31700833), Young Elite Scientists Sponsorship Program by CAST (2017QNRC001), the Fundamental Research Funds for the Central Universities (YJ201641), National Key Research and Development Programs (2017YFC1104200, 2016YFC1102200), and the Program of Introducing Talents of Discipline to Universities (111 Project, No. B16033). We would like to thank VENUS MEDTECH Inc. (Hangzhou, China) for providing us with fresh pericardiums.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yang Lei or Yunbing Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lei, Y., Ning, Q., Tang, Y. et al. Exogenous hyaluronic acid and chondroitin sulfate crosslinking treatment for increasing the amount and stability of glycosaminoglycans in bioprosthetic heart valves. J Mater Sci: Mater Med 30, 38 (2019). https://doi.org/10.1007/s10856-019-6237-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10856-019-6237-7

Navigation