Skip to main content

Advertisement

Log in

Molecular mechanisms driving Streptococcus mitis entry into human gingival fibroblasts in presence of chitlac-nAg and saliva

  • Biocompatibility Studies
  • Original Research
  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

The molecular mechanisms leading to Streptococcus mitis capability of entering oral cells were investigated in a co-culture of S. mitis and Human Gingival Fibroblasts (HGFs) in the presence of saliva. An innovative colloidal solution based on silver nanoparticles (Chitlac-nAg), a promising device for daily oral care, was added to the experimental system in order to study the effects of silver on the bacterial overgrowth and ability to enter non-phagocytic eukaryotic cells. The entry of bacteria into the eukaryotic cells is mediated by a signalling pathway involving FAK, integrin β1, and the two cytoskeleton proteins vinculin and F-actin, and down-regulated by the presence of saliva both at 3 and 48 h of culture, whereas Chitlac-n Ag exposure seems to influence, by incrementing it, the number of bacteria entering the fibroblasts only at 48 h. The formation of fibrillary extrusion from HGFs and the co-localization of bacteria and silver nanoparticles within the fibroblast vacuoles were also recorded. After longer experimental times (72 and 96 h), the number of S. mitis chains inside gingival cells is reduced, mainly in presence of saliva. The results suggest an escape of bacteria from fibroblasts to restore the microbial balance of the oral cavity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Filoche S, Wong L, Sissons CH. Oral biofilms: emerging concept in microbial ecology. J Dent Res. 2010;89:8–18.

    Article  Google Scholar 

  2. Mitchell J. Streptococcus mitis: walking the line between commensalism and pathogenesis. Mol Oral Microbiol. 2011;26:89–98.

    Article  Google Scholar 

  3. Rudney JD, Chen R, Zhang G. Streptococci dominate the diverse flora within buccal cells. J Dent Res. 2005;84:1165–71.

    Article  Google Scholar 

  4. Rudney JD, Chen R. The vital status of human buccal epithelial cells and the bacteria associated with them. Arch Oral Biol. 2006;51:291–8.

    Article  Google Scholar 

  5. Tsaplina OA. Phagocytosis of bacterial pathogens: modification of cellular processes by bacterial factors. Tsitologiia. 2013;55:83–91.

    Google Scholar 

  6. Bozhokina ES, Tsaplina OA, Efremova TN, Kever LV, Demidyuk IV, Kostrov SV, et al. Bacterial invasion of eukaryotic cells can be mediated by actin-hydrolysing metalloproteases grimelysin and protealysin. Cell Biol Int. 2011;35:111–8.

    Article  Google Scholar 

  7. Humpries JD, Wang P, Streuli C, Geiger B, Humpries MJ, Ballestrem C. Vinculin controls focal adhesion formation by direct interactions with talin and actin. J Cell Biol. 2007;179:1043–57.

    Article  Google Scholar 

  8. Rai M, Yadav A, Gade A. Silver nanoparticles as a new generation of antimicrobials. Biotechnol Adv. 2001;27:76–83.

    Article  Google Scholar 

  9. Morones JR, Elechiguerra JL, Camacho A, Holt K, Kouri JB, Ramirez JT. The bactericidal effect of silver nanoparticles. Nanotechnology. 2005;16:2346–53.

    Article  Google Scholar 

  10. Travan A, Pelillo C, Donati I, Marsich E, Benincasa M, Scarpa T, et al. Non-cytotoxic silver nanoparticle-polysaccharide nanocomposites with antimicrobial activity. Biomacromolecules. 2009;10:1429–35.

    Article  Google Scholar 

  11. Marsich E, Travan A, Donati I, Turco G, Kulkova J, Moritz N, et al. Biological responses of silver coated thermosets: an in vitro and in vivo study. Acta Biomater. 2013;9:5088–99.

    Article  Google Scholar 

  12. Di Giulio M, Di Bartolomeo S, Di Campli E, Sancilio S, Marsich E, Travan A, et al. The effect of a silver nanoparticle polysaccharide system on Streptococcal and saliva-derived biofilms. Int J Mol Sci. 2013;14:13615–25.

    Article  Google Scholar 

  13. Cataldi A, Gallorini M, Di Giulio M, Guarnieri S, Mariggiò MA, Traini T, Di Pietro R, Cellini L, Marsich E, Sancilio S. Adhesion of human gingival fibroblasts/Streptococcus mitis co-culture on the nanocomposite system Chitlac-nAg. J Mater Sci Mater Med. 2016;27:88. https://doi.org/10.1007/s10856-016-5701-x.

    Article  Google Scholar 

  14. Gallorini M, di Giacomo V, Di Valerio V, Rapino M, Bosco D, Travan A, et al. Cell-protection mechanism through autophagy in HGFs/S. mitis co-culture treated with chitlac-nAg. J Mater Sci: Mater Med. 2016;27:186.

    Google Scholar 

  15. Zara S, Di Giulio M, D’Ercole S, Cellini L, Cataldi A. Anti-adhesive and pro-apoptotic effects of HEMA on human gingival fibroblasts co-cultured with S. mitis strains. Int Endod J. 2011;44:1145–54.

    Article  Google Scholar 

  16. Di Giulio M, D’Ercole S, Zara S, Cataldi A, Cellini L. S. mitis/human gingival fibroblasts co-culture: the best natural association in answer to HEMA release. APMIS. 2012;120:139–46.

    Article  Google Scholar 

  17. Yalpani M, Hall LD. Some chemical and analytical aspects of polysaccharide modification. III. Formation of branched-chain, soluble chitosan derivatives. Macromolecules. 1984;17:272–81.

    Article  Google Scholar 

  18. Travan A, Marsich E, Donati I, Benincasa M, Giazzon M, Felisari L, et al. Silver-polysaccharide nanocomposite antimicrobial coatings for methacrylic thermosets. Acta Biomater. 2011;7:337–46.

    Article  Google Scholar 

  19. Sancilio S, di Giacomo V, Di Giulio M, Gallorini M, Marsich E, Travan A, et al. Biological responses of human gingival fibroblasts (HGFs) in an innovative co-culture model with Streptococcus mitis to thermosets coated with a silver polysaccharide antimicrobial system. PLoS ONE. 2014;7:e96520.

    Article  Google Scholar 

  20. Arirachakaran P, Apinhasmit W, Paungmalit P, Jeramethakul P, Rerkyen P, Mahanonda R. Infection of human gingival fibroblasts with Aggregatibacter actinomycetemcomitans: An in vitro study. Arch Oral Biol. 2012;57:964–72.

    Article  Google Scholar 

  21. Nizet V, Smith AL, Sullam PM, Rubens CEA. Simple microtiter plate screening assay for bacterial invasion or adherence. Methods Cell Sci. 1998;20:107–11.

    Article  Google Scholar 

  22. Kim JO, Romero-Steiner S, Sorensen UBS, Blom J, Carvalho M, Barnard S, et al. Relationship between cell surface carbohydrates and intrastrain variation on opsonophagocytosis of Streptococcus pneumoniae. Infect Immun. 1999;67:2327–33.

    Google Scholar 

  23. Nelson AL, Roche AM, Gould JM, Chim K, Ratner AJ, Weiser JN. Capsule enhances pneumococcal colonization by limiting mucus-mediated clearance. Infect Immun. 2007;75:83–90.

    Article  Google Scholar 

  24. Kadioglu A, Weiser JN, Paton JC, Andrew PW.The role of Streptococcus pneumoniae virulence factors in host respiratory colonization and disease.Nat Rev Microbiol. 2008;6:288–301.

    Article  Google Scholar 

  25. Hammerschmidt S, Wolff S, Hocke A, Rosseau S, Müller E, Rohde M. Illustration of pneumococcal polysaccharide capsule during adherence and invasion of epithelial cells. Infect Immun. 2005;73:4653–67.

    Article  Google Scholar 

  26. Rukke HV, Kalluru RS, Repnik U, Gerlini A, José RJ, Periselneris J, et al. Protective role of the capsule and impact of serotype 4 switching on Streptococcus mitis. Infect Immun. 2014;82:3790–801.

    Article  Google Scholar 

  27. Kilian M, Poulsen K, Blomqvist T, Havarstein LS, Bek-Thomsen M, Tettelin H, et al. Evolution of Streptococcus pneumoniae and its close commensal relatives. PLoS ONE. 2008;3:e2683.

    Article  Google Scholar 

  28. Nagata E, de Toledo A, Oho T. Invasion of human aortic endothelial cells by oral viridans group streptococci and induction of inflammatory cytokine production. Mol Oral Microbiol. 2011;26:78–88.

    Article  Google Scholar 

  29. Bonazzi M, Cossart P. Bacterial entry into cells: a role for the endocytic machinery. FEBS Lett. 2006;580:2962–7.

    Article  Google Scholar 

  30. Ozeri V, Rosenshine I, Ben-Ze’Ev A, Bokoch GM, Jou TS, Hanski E. De novo formation of focal complex-like structures in host cells by invading Streptococci. Mol Microbiol. 2001;41:561–73.

    Article  Google Scholar 

  31. Cossart P, Sansonetti PJ. Bacterial invasion: the paradigms of enteroinvasive pathogens. Science. 2004;304:242–8.

    Article  Google Scholar 

  32. Di Giacomo V, Pacella S, Rapino M, Di Giulio M, Zara S, Pasquantonio G, et al. pPKC α regulates through integrin β1 human gingival fibroblasts/Streptococcus mitis adhesion in response to HEMA. Int Endod J. 2013;46:1164–72.

    Article  Google Scholar 

  33. Pizarro-Cerdà J, Cossart P. Bacterial adhesion and entry into host cells. Cell. 2006;124:715–27.

    Article  Google Scholar 

  34. Eick S, Kirschbaum M, Pfister W. Saliva influences interaction of periodontopathic bacteria with KB-cells. 86th General Session & Exhibition of the IADR, 2–5 July. Conference Proceeding. Toronto, Canada; 2008.

  35. Colombo AV, da Silva CM, Haffajee A, Colombo AP. Identification of oral bacteria associated with crevicular epithelial cells from chronic periodontitis lesions. J Med Microbiol. 2006;55:609–15.

    Article  Google Scholar 

  36. Yilmaz O. The chronicles of Porphyromonas gingivalis: the microbium, the human oral epithelium and their interplay. Microbiology. 2008;154:2897–903.

    Article  Google Scholar 

  37. Avila M, Ojcius DM, Yilmaz O. The oral microbiota: living with a permanent guest. DNA Cell Biol. 2009;28:405–11.

    Article  Google Scholar 

  38. Conner SD, Schmid SL. Regulated portals of entry into the cell. Nature. 2003;422:37–44.

    Article  Google Scholar 

  39. Abranches J, Zeng L, Bélanger M, Rodrigues PH, Simpson-Haidaris PJ, et al. Invasion of human coronary artery endothelial cells by Streptococcus mutans OMZ175. Oral Microbiol Immunol. 2009;24:141–5.

    Article  Google Scholar 

  40. Berlutti F, Catizone A, Ricci G, Frioni A, Natalizi T, Valenti P, et al. Streptococcus mutans and Streptococcus sobrinus are able to adhere and invade human gingival fibroblast cell line. Int J Immunopathol Pharmacol. 2010;23:1253–60.

    Article  Google Scholar 

  41. Monteiro-Riviere NA, Samberg ME, Oldenburg SJ, Riviere JE. Protein binding modulates the cellular uptake of silver nanoparticles into human cells: implications for in vitro to in vivo extrapolations? Toxicol Lett. 2013;220:286–93.

    Article  Google Scholar 

  42. Stinson MW, Alder S, Kumar S. Invasion and killing of human endothelial cells by viridans group streptococci. Infect Immun. 2003;71:2365–72.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by: FIRB project, “Accordi di programma 2010”, Prof. Cataldi (Cod.RBAPI095), on “Processi degenerativi dei tessuti mineralizzati del cavo orale, impieghi di biomateriali e controllo delle interazioni con microrganismi dell’ambiente”; and “FAR” 2015 grant Prof. Luigina Cellini. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Sancilio.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Di Giulio, M., Di Valerio, V., Bosco, D. et al. Molecular mechanisms driving Streptococcus mitis entry into human gingival fibroblasts in presence of chitlac-nAg and saliva. J Mater Sci: Mater Med 29, 36 (2018). https://doi.org/10.1007/s10856-018-6040-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10856-018-6040-x

Navigation