Skip to main content

Advertisement

Log in

Cell response of flexible PMMA-derivatives: supremacy of surface chemistry over substrate stiffness

  • Emerging Group Leaders: Research and Reflections on Career Goals
  • Original Research
  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

The present work reports on the development of a range of poly(methyl methacrylate)/poly(ethylene glycol) (PMMAPEG)-based materials, characterized by different elasticity moduli in order to study the influence of the substrate’s mechanical properties on the response of human umbilical vein endothelial cells (HUVECs). To render the selected materials cell-interactive, a polydopamine (PDA)/gelatin type B (Gel B) coating was applied. Prior to the in vitro assay, the success of the PDA and Gel B immobilization onto the materials was confirmed using X-ray photoelectron spectroscopy (XPS) as reflected by the nitrogen percentages measured for the materials after PDA and Gel B deposition. Tensile tests showed that materials with E-moduli ranging from 37 to 1542 MPa could be obtained by varying the ratio between PMMA and PEG as well as the PEG molecular weight and its functionality (i.e. mono-methacrylate vs. di-methacrylate). The results after 1 day of cell contact suggested a preferred HUVECs cell growth onto more rigid materials. After 1 week, the material with the lowest E-modulus of 37 MPa showed lower cell densities compared to the other materials. No clear correlation could be observed between the number of focal adhesion points and the substrate stiffness. Although minor differences were found, these were not statistically significant. This last conclusion again highlights the universal character of the PDA/Gel B modification. The present work could thus be valuable for the development of a range of cell substrates requiring different mechanical properties in line with the envisaged application while the cell response should ideally remain unaffected.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Huang XY, Brittain WJ. Synthesis and characterization of PMMA nanocomposites fby suspension and emulsion polymerization. Macromolecules. 2001;34(10):3255–60.

    Article  Google Scholar 

  2. Zheng W, Wong SC. Electrical conductivity and dielectric properties of PMMA/expanded graphite composites. Compos Sci Technol. 2003;63(2):225–35.

    Article  Google Scholar 

  3. Chen GH, Weng WG, Wu DJ, Wu CL. PMMA/graphite nanosheets composite and its conducting properties. Eur Polym J. 2003;39(12):2329–35.

    Article  Google Scholar 

  4. Mishra SK, Tripathi SN, Choudhary V, Gupta BD. SPR based fibre optic ammonia gas sensor utilizing nanocomposite film of PMMA/reduced graphene oxide prepared by in situ polymerization. Sens Actuators B-Chem. 2014;199:190–200.

    Article  Google Scholar 

  5. Wang T, Shen J-n, Wu L-g, Van der Bruggen B. Improvement in the permeation performance of hybrid membranes by the incorporation of functional multi-walled carbon nanotubes. J Memb Sci. 2014;466:338–47.

    Article  Google Scholar 

  6. Park SJ, Cho MS, Lim ST, Choi HJ, Jhon MS. Synthesis and dispersion characteristics of multi-walled carbon nanotube composites with poly(methyl methacrylate) prepared by in-situ bulk polymerization. Macromol Rapid Commun. 2003;24(18):1070–3.

    Article  Google Scholar 

  7. Sung JH, Kim HS, Jin HJ, Choi HJ, Chin IJ. Nanofibrous membranes prepared by multiwalled carbon nanotube/poly(methyl methacrylate) composites. Macromolecules. 2004;37(26):9899–902.

    Article  Google Scholar 

  8. Jia ZJ, Wang ZY, Xu CL, Liang J, Wei BQ, Wu DH, et al. Study on poly(methyl methacrylate)/carbon nanotube composites. Mater Sci Eng a-Struct Mater Prop Microstruct Process. 1999;271(1-2):395–400.

    Article  Google Scholar 

  9. Hammer P, dos Santos FC, Cerrutti BM, Pulcinelli SH, Santilli CV. Carbon nanotube-reinforced siloxane-PMMA hybrid coatings with high corrosion resistance. Prog Org Coat. 2013;76(4):601–8.

    Article  Google Scholar 

  10. Weng B, Xu F, Salinas A, Lozano K. Mass production of carbon nanotube reinforced poly(methyl methacrylate) nonwoven nanofiber mats. Carbon. 2014;75:217–26.

    Article  Google Scholar 

  11. Wang B, Zhou K, Jiang S, Shi Y, Wang B, Gui Z, et al. Poly(methyl methacrylate)/layered zinc sulfide nanocomposites: preparation, characterization and the improvements in thermal stability, flame retardant and optical properties. Mater Res Bull. 2014;56:107–12.

    Article  Google Scholar 

  12. Li Y, Zhang S, Gao L, Chen W, Gao L, Zhang W, et al. The preparation and characterization of ZnS/PMMA nanocomposites. Synth React Inorg Metal-Org Nano-Metal Chem. 2014;44(7):942–5.

    Article  Google Scholar 

  13. Zhou K, Liu J, Wang B, Zhang Q, Shi Y, Jiang S, et al. Facile preparation of poly(methyl methacrylate)/MoS2 nanocomposites via in situ emulsion polymerization. Mater Lett. 2014;126:159–61.

    Article  Google Scholar 

  14. Okamoto M, Morita S, Taguchi H, Kim YH, Kotaka T, Tateyama H. Synthesis and structure of smectic clay/poly(methyl methacrylate) and clay/polystyrene nanocomposites via in situ intercalative polymerization. Polymer. 2000;41(10):3887–90.

    Article  Google Scholar 

  15. Biasci L, Aglietto M, Ruggeri G, Ciardelli F. Functionalization of montmorillonite by methyl-methacrylate polymers containing side-chain ammonium cations. Polymer. 1994;35(15):3296–304.

    Article  Google Scholar 

  16. Lee DC, Jang LW. Preparation and characterization of PMMA-clay hybrid composite by emulsion polymerization. J Appl Polym Sci. 1996;61(7):1117–22.

    Article  Google Scholar 

  17. Zeng CC, Lee LJ. Poly(methyl methacrylate) and polystyrene/clay nanocomposites prepared by in-situ polymerization. Macromolecules. 2001;34(12):4098–103.

    Article  Google Scholar 

  18. Ash BJ, Schadler LS, Siegel RW. Glass transition behavior of alumina/polymethylmethacrylate nanocomposites. Mater Lett. 2002;55(1-2):83–7.

    Article  Google Scholar 

  19. Landry CJT, Coltrain BK, Brady BK. In situ polymerization of tetraethoxysilane in poly(methyl methacrylate) - morphology and dynamic mechanical properties. Polymer. 1992;33(7):1486–95.

    Article  Google Scholar 

  20. Mu J, Zhou YM, Bu XH, Zhang T. Preparation and characterization of micron-sized PMMA/SiO2 composite microspheres. J Inorg Organomet Polym Mater. 2014;24(4):776–9.

    Article  Google Scholar 

  21. Morales Nieto V, Navarro CH, Moreno KJ, Arizmendi Morquecho A, Chavez Valdez A, Chávez Valdez A, et al. Poly(methyl methacrylate)/carbonated hydroxyapatite composite applied as coating on ultra high molecular weight polyethylene. Prog Org Coat. 2013;76(1):204–8.

    Article  Google Scholar 

  22. Rao M, Su Q, Liu Z, Liang P, Wu N, Quan C, et al. Preparation and characterization of a Poly(methyl methacrylate) based composite bone cement containing poly(acrylate-co-silane) modified hydroxyapatite nanoparticles. J Appl Polym Sci. 2014;131:15.

    Article  Google Scholar 

  23. Mano JF, Sousa RA, Boesel LF, Neves NM, Reis RL. Bloinert Biodegradable and injectable polymeric matrix composites for hard tissue replacement: state of the art and recent developments. Compos Sci Technol. 2004;64(6):789–817.

    Article  Google Scholar 

  24. Kong H, Jang J. Antibacterial properties of novel poly(methyl methacrylate) nanofiber containing silver nanoparticles. Langmuir. 2008;24(5):2051–6.

    Article  Google Scholar 

  25. Araújo E, Hage JrE, Carvalho A. Morphological, mechanical and rheological properties of nylon 6/acrylonitrile-butadiene-styrene blends compatibilized with MMA/MA copolymers. J Mater Sci. 2003;38(17):3515–20.

    Article  Google Scholar 

  26. Fukuda T, Ma YD, Inagaki H. Free‐radical copolymerization, 6. new interpretation for the propagation rate versus composition curve. Die Makromol Chem, Rapid Commun. 1987;8(10):495–9.

    Article  Google Scholar 

  27. Eisa T, Sefton MV. Towards the preparation of a MMA-PEO block copolymer for the microencapsulation of mammalian cells. Biomaterials. 1993;14(10):755–61.

    Article  Google Scholar 

  28. Lloyd AW, Faragher RGA, Denyer SP. Ocular biomaterials and implants. Biomaterials. 2001;22(8):769–85.

    Article  Google Scholar 

  29. El Khadali F, Helary G, Pavon-Djavid G, Migonney V. Modulating fibroblast cell proliferation with functionalized poly(methyl methacrylate) based copolymers: chemical composition and monomer distribution effect. Biomacromolecules. 2002;3(1):51–6.

    Article  Google Scholar 

  30. Evans MDM, Pavon-Djavid G, Helary G, Legeais JM, Migonney W. Vitronectin is significant in the adhesion of lens epithelial cells to PMMA polymers. J Biomed Mater Res A. 2004;69A(3):469–76.

    Article  Google Scholar 

  31. Bar FW, van der Veen FH, Benzina A, Habets J, Koole LH. New biocompatible polymer surface coating for stents results in a low neointimal response. J Biomed Mater Res. 2000;52(1):193–8.

    Article  Google Scholar 

  32. Yang CY, Cao Y, Smith P, Heeger AJ. Morphology of conductive, solution-processed blends of polyanailine and poly(methyl methacrylate). Synth Met. 1993;53(3):293–301.

    Article  Google Scholar 

  33. Tanaka K, Takahara A, Kajiyama T. Film thickness dependence of the surface structure of immiscible polystyrene/poly(methyl methacrylate) blends. Macromolecules. 1996;29(9):3232–9.

    Article  Google Scholar 

  34. Jian X-x, Xiao L-q, Zhou W-l, Xu F-m. Synthesis and characterization of PMMA/PEG-TPE semi-interpenetrating polymer networks. Polym Bull. 2009;63(2):225–33.

    Article  Google Scholar 

  35. Yeung T, Georges PC, Flanagan LA, Marg B, Ortiz M, Funaki M, et al. Effects of substrate stiffness on cell morphology, cytoskeletal structure, and adhesion. Cell Motil Cytoskelet. 2005;60(1):24–34.

    Article  Google Scholar 

  36. Nemir S, West JL. Synthetic materials in the Study of cell response to substrate rigidity. Ann Biomed Eng. 2010;38(1):2–20.

    Article  Google Scholar 

  37. Discher DE, Janmey P, Wang YL. Tissue cells feel and respond to the stiffness of their substrate. Science. 2005;310(5751):1139–43.

    Article  Google Scholar 

  38. Wells RG. The role of matrix stiffness in regulating cell behavior. Hepatology. 2008;47(4):1394–400.

    Article  Google Scholar 

  39. Reinhart-King CA. How matrix properties control the self-assembly and maintenance of tissues. Ann Biomed Eng. 2011;39(7):1849–56.

    Article  Google Scholar 

  40. Lee H, Dellatore SM, Miller WM, Messersmith PB. Mussel-inspired surface chemistry for multifunctional coatings. Science. 2007;318(5849):426–30.

    Article  Google Scholar 

  41. Van de Walle E, Nieuwenhove I, Vanderleyden E, Declercq H, Gellynck K, Schaubroeck D, et al. Polydopamine-gelatin as universal cell-interactive coating for methacrylate-based medical device packaging materials: when surface chemistry overrules substrate bulk properties. Biomacromolecules. 2016;17(1):56–68.

    Article  Google Scholar 

  42. Giol ED, Schaubroeck D, Kersemans K, De Vos F, Van Vlierberghe S, Dubruel P. Bio-inspired surface modification of PET for cardiovascular applications: case study of gelatin. Colloids Surf B-Biointerfaces. 2015;134:113–21.

    Article  Google Scholar 

  43. Zhang K, Bai YX, Wang XF, Li Q, Guan FX, Li JG. Surface modification of esophageal stent materials by a polyethylenimine layer aiming at anti-cancer function. J Mater Sci-Mater Med. 2017;28(8):8.

    Article  Google Scholar 

  44. Singh S, Wu BM, Dunn JCY. Delivery of VEGF using collagen-coated polycaprolactone scaffolds stimulates angiogenesis. J Biomed Mater Res A. 2012;100A(3):720–7.

    Article  Google Scholar 

  45. Anderson SM, Siegman SN, Segura T. The effect of vascular endothelial growth factor (VEGF) presentation within fibrin matrices on endothelial cell branching. Biomaterials. 2011;32(30):7432–43.

    Article  Google Scholar 

  46. Van De Walle E, Van Nieuwenhove I, Vanderleyden E, Declercq H, Gellynck K, Schaubroeck D, et al. Polydopamine–gelatin as universal cell-interactive coating for methacrylate-Based Medical device packaging materials: when surface chemistry overrules substrate bulk properties. Biomacromolecules. 2016;17(1):56–68.

    Article  Google Scholar 

  47. De Vos W, Van Neste L, Dieriks B, Joss G, Van Oostveldt P. High content image cytometry in the context of subnuclear organization. Cytom Part A. 2010;77(1):64–75.

    Google Scholar 

  48. The R Foundation for Statistical Computing. http://www.r-project.org/index.html. 2014.

  49. McGann CL, Dumm RE, Jurusik AK, Sidhu I, Kiick KL. Thiol-ene photocrosslinking of cytocompatible resilin-like polypeptide-peg hydrogels. Macromol Biosci. 2016;16(1):129–38.

    Article  Google Scholar 

  50. Hwang JW, Noh SM, Kim B, Jung HW. Gelation and crosslinking characteristics of photopolymerized poly(ethylene glycol) hydrogels. J Appl Polym Sci. 2015;132(22):6.

    Article  Google Scholar 

  51. Van Vlierberghe S, Schacht E, Dubruel P. Reversible gelatin-based hydrogels: finetuning of material properties. Eur Polym J. 2011;47(5):1039–47.

    Article  Google Scholar 

  52. Zhang QC, Kratz K, Lendlein A. Shape-memory properties of degradable electrospun scaffolds based on hollow microfibers. Polym Adv Technol. 2015;26(12):1468–75.

    Article  Google Scholar 

  53. Van Vlierberghe S, Dubruel P, Lippens E, Masschaele B, Van Hoorebeke L, Cornelissen M, et al. Toward modulating the architecture of hydrogel scaffolds: curtains versus channels. J Mater Sci-Mater Med. 2008;19(4):1459–66.

    Article  Google Scholar 

  54. Primo GA, Igarzabal CIA, Pino GA, Ferrero JC, Rossa M. Surface morphological modification of crosslinked hydrophilic co-polymers by nanosecond pulsed laser irradiation. Appl Surf Sci. 2016;369:422–9.

    Article  Google Scholar 

  55. Pelham RJ, Wang YL. Cell locomotion and focal adhesions are regulated by substrate flexibility. Proc Natl Acad Sci USA. 1997;94(25):13661–5.

    Article  Google Scholar 

  56. Bott K, Upton Z, Schrobback K, Ehrbar M, Hubbell JA, Lutolf MP, et al. The effect of matrix characteristics on fibroblast proliferation in 3D gels. Biomaterials. 2010;31(32):8454–64.

    Article  Google Scholar 

  57. Fioretta ES, Fledderus JO, Baaijens FPT, Bouten CVC. Influence of substrate stiffness on circulating progenitor cell fate. J Biomech. 2012;45(5):736–44.

    Article  Google Scholar 

  58. Califano JP, Reinhart-King CA. A balance of substrate mechanics and matrix chemistry regulates endothelial cell network assembly. Cell Mol Bioeng. 2008;1(2-3):122–32.

    Article  Google Scholar 

Download references

Acknowledgements

Sandra Van Vlierberghe would like to acknowledge the Research Foundation-Flanders (FWO, Belgium) for financial support under the form of Research Grants (FWOKN273, G005616N, G0F0516N, FWOAL843). Peter Dubruel would like to acknowledge the Alexander von Humboldt Foundation for financial support in the form of a granted Research Fellowship, as well as the Hercules Foundation (grant AUGE09025). This research has benefitted from a statistical consult with Ghent University FIRE (Fostering Innovative Research based on Evidence).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Peter Dubruel or Sandra Van Vlierberghe.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Van De Walle, E., Van Nieuwenhove, I., De Vos, W. et al. Cell response of flexible PMMA-derivatives: supremacy of surface chemistry over substrate stiffness. J Mater Sci: Mater Med 28, 183 (2017). https://doi.org/10.1007/s10856-017-5994-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10856-017-5994-4

Navigation