Skip to main content

Advertisement

Log in

Evaluation of biodegradable Zn-1%Mg and Zn-1%Mg-0.5%Ca alloys for biomedical applications

  • Clinical Applications of Biomaterials
  • Original Research
  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Increasing interest in biodegradable metals (Mg, Fe, and Zn) as structural materials for orthopedic and cardiovascular applications mainly relates to their promising biocompatibility, mechanical properties and ability to self-remove. However, Mg alloys suffer from excessive corrosion rates associated with premature loss of mechanical integrity and gas embolism risks. Fe based alloys produce voluminous corrosion products that have a detrimental effect on neighboring cells and extracellular matrix. In contrast, Zn does not appear to exhibit a harmful mode of corrosion. Unfortunately, pure zinc possesses insufficient mechanical strength for biomedical structural applications. The present study aimed at examining the potential of two new zinc based alloys, Zn-1%Mg and Zn-1%Mg-0.5%Ca to serve as structural materials for biodegradable implants. This examination was carried out under in vitro conditions, including immersion testing, potentiodynamic polarization analysis, electrochemical impedance spectroscopy (EIS), and stress corrosion cracking (SCC) assessments in terms of slow strain rate testing (SSRT). In order to assess the cytotoxicity of the tested alloys, cell viability was evaluated indirectly using Saos-2 cells. The results demonstrate that both zinc alloys can be considered as potential candidates for biodegradable implants, with a relative advantage to the Zn-1%Mg alloy in terms of its corrosion resistance and SCC performance.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Zheng YF, Gu XN, Witte F. Biodegradable metals. Met Mater Sci Eng R. 2014;77:1–34.

    Article  Google Scholar 

  2. Ma J, Zhao N, Zhu D. Endothelial cellular responses to biodegradable metal zinc. ACS Biomater Sci Eng. 2015;1:1174–82.

    Article  Google Scholar 

  3. Aghion E, Levy G. The effect of Ca on the in vitro corrosion performance of the biodegradable Mg-Nd-Y-Zr alloy. J Mater Sci. 2010;45:3096–101.

    Article  Google Scholar 

  4. Murni NS, Dambatta MS, Yeap SK, Froemming GRA, Hermawan H. Cytotoxicity evaluation of biodegradable Zn-3Mg alloy toward normal human osteoblast cells. Mat Sci Eng C. 2015;49:560–6.

    Article  Google Scholar 

  5. Dunne CF, Katarivas Levy G, Hakimi O, Aghion E, Twomey B, Stanton KT. Corrosion behavior of biodegradable magnesium alloys with hydroxyapatite coatings. Surf Coat Tech. 2016;289:37–44.

    Article  Google Scholar 

  6. Guillory RJ II, Bowen PK, Hopkins SP, Shearier ER, Earley EJ, Gillette AA, Aghion E, Bocks ML, Drelich JW, Goldman J. Corrosion characteristics dictate the long-term inflammatory profile of degradable zinc arterial implants. ACS Biomater Sci Eng. 2016;2:2355–64.

    Article  Google Scholar 

  7. Levy G, Aghion E. Effect of diffusion coating of Nd on the corrosion resistance of biodegradable Mg implants in simulated physiological electrolyte. Acta Biomater. 2013;9:8624–30.

    Article  Google Scholar 

  8. Hakimi O, Aghion E, Goldman J. Improved stress corrosion cracking resistance of a novel biodegradable EW62 Mg alloy by rapid solidification, in simulated electrolytes. Mater Sci Eng. 2015;51:226–32.

    Article  Google Scholar 

  9. Li HF, Xie XH, Zheng YF, Cong Y, Zhou FY, Qiu KJ, Wang X, Chen SH, Huang L, Tian L, Qin L. Development of biodegradable Zn-1X binary alloys with nutrient alloying elements Mg, Ca and Sr. Sci Rep. 2015;5:10719.

    Article  Google Scholar 

  10. Katarivas Levy G, Aghion E. Influence of heat treatment temperature on corrosion characteristics of biodegradable EW10X04 Mg alloy coated with Nd. Adv Eng Mater. 2016;18:269–76.

    Article  Google Scholar 

  11. Bowen PK, Shearier ER, Zhao S, Guillory RJ, Zhao F, Goldman J, Drelich JW. Biodegradable metals for cardiovascular stents: from clinical concerns to recent Zn-alloys. Adv Healthcare Mater. 2016;5:1121–40.

    Article  Google Scholar 

  12. Shearier ER, Bowen PK, He W, Drelich A, Drelich J, Goldman J, Zhao F. In Vitro cytotoxicity, adhesion, and proliferation of human vascular cells exposed to zinc. ACS Biomater Sci Eng. 2016;2:634–42.

    Article  Google Scholar 

  13. Vojtěch D, Kubásek J, Serák J, Novák P. Mechanical and corrosion properties of newly developed biodegradable Zn-based alloys for bone fixation. Acta Biomater. 2011;7:3515–22.

    Article  Google Scholar 

  14. Seitz JM, Durisin M, Goldman J, Drelich JW. Recent advances in biodegradable metals for medical sutures: a critical review. Adv Healthcare Mater. 2015;4:1915–36.

    Article  Google Scholar 

  15. Li H, Yang H, Zheng Y, Zhou F, Qiu K, Wang X. Design and characterization of novel biodegradable ternary Zn-based alloys with IIA nutrient alloying elements Mg, Ca and Sr. Mater Des. 2015;83:95–102.

    Article  Google Scholar 

  16. Bowen PK, Drelich J, Goldman J. Zinc exhibits ideal physiological corrosion behavior for bioabsorbable stents. Adv Mater. 2013;25:2577–82.

    Article  Google Scholar 

  17. Liu X, Sun J, Qiu K, Yang Y, Pu Z, Li L, Zheng Y. Effects of alloying elements (Ca and Sr) on microstructure, mechanical property and in vitro corrosion behavior of biodegradable Zn–1.5Mg alloy. J Alloys Compd. 2016;664:444–52.

    Article  Google Scholar 

  18. Pospíšilová I, Dalibor D. Zinc alloys for biodegradable medical implants. Mater Sci Forum. 2014;782:457–60.

    Article  Google Scholar 

  19. Kubásek J, Pospíšilová I, Dalibor D, Jablonská E, Ruml T. Structural, mechanical and cytotoxicity characterization of as-cast biodegradable Zn-xMg (x = 0.8-8.3 %) alloys. Materiali in tehnologije. 2014;48:623–9.

    Google Scholar 

  20. Gong H, Wang K, Strich R, Zhou JG. In vitro biodegradation behavior, mechanical properties, and cytotoxicity of biodegradable Zn-Mg alloy. J Biomed Mater Res B Appl Biomater. 2015;103:1632–40.

    Article  Google Scholar 

  21. Katarivas Levy G, Ventura Y, Goldman J, Vago R, Aghion E. Cytotoxic characteristics of biodegradable EW10X04 Mg alloy after Nd coating and subsequent heat treatment. Mat Sci Eng C. 2016;62:752–61.

    Article  Google Scholar 

  22. Leon A, Shirizly A, Aghion E. Corrosion behavior of AlSi10Mg alloy produced by additive manufacturing (AM) vs. its counterpart gravity cast alloy. Metals. 2016;6:148–57.

    Article  Google Scholar 

  23. ISO-10993-5. Biological evaluation of medical devices, Part 5: Tests for in vitro cytotoxicity. Geneva Switzerland: International Organization for Standardization, ISO Central Secretaria; 2009.

    Google Scholar 

  24. ISO-10993-12. Biological evaluation of medical devices, Part 12: Sample preparation and reference materials. Arlington: International Organization for Standardization, ISO Central Secretaria; 2012.

    Google Scholar 

  25. Mensah-Darkwa K, Gupta R, Kumar D. Mechanical and corrosion properties of magnesium–hydroxyapatite (Mg–HA) composite thin films. Mater Sci Tech Ser. 2013;29:788–94.

    Article  Google Scholar 

  26. Palomino LE, Suegama PH, Aoki IV, Paszti Z, Melo HG. Investigation of the corrosion behaviour of a bilayer cerium-silane pre-treatment on Al 2024-T3 in 0.1 M NaCl. Electrochim Acta. 2007;52:7496–505.

    Article  Google Scholar 

  27. Zhong X, Li Q, Hu J, Zhang S, Chen B, Xu S, Luo F. A novel approach to heal the sol–gel coating system on magnesium alloy for corrosion protection. Electrochim Acta. 2010;55:2424–9.

    Article  Google Scholar 

  28. Zhao Y, Jamesh MI, Lia WK, Wu G, Wang C, Zheng Y, Yeung KWK, Chu PK. Enhanced antimicrobial properties, cytocompatibility, and corrosion resistance of plasma-modified biodegradable magnesium alloys. Acta Biomater. 2014;10:544–56.

    Article  Google Scholar 

  29. Walter R, Kannan MB. In-vitro degradation behavior of WE54 magnesium alloy in simulated body fluid. Mater Lett. 2011;65:748–50.

    Article  Google Scholar 

  30. Fekry AM, El-Sherif RM. Electrochemical corrosion behavior of magnesium and titanium alloys in simulated body fluid. Electrochim Acta. 2009;56:7280–5.

    Article  Google Scholar 

  31. Ghasemi A, Raja VS, Blawert C, Dietzel W, Kainer KU. Study of the structure and corrosion behavior of PEO coating on AM50 magnesium alloy by electrochemical impedance spectroscopy. Surf Coat Tech. 2008;202:3513–8.

    Article  Google Scholar 

  32. Suegama PH, Sarmento VHV, Montemor MF, Benedetti AV, Melo HG, Aoki IV, Santilli CV. Effect of cerium (IV) ions on the anticorrosion properties of siloxane-poly (methyl methacrylate) based film applied on tin coated steel. Electrochim Acta. 2010;55:5100–9.

    Article  Google Scholar 

  33. Alabbasi A, Kannan MB, Walter R, Störmer M, Blawert C. Performance of pulsed constant current silicate-based PEO coating on pure magnesium in simulated body fluid. Mater Lett. 2013;106:18–21.

    Article  Google Scholar 

  34. Kannan MB, Dietzel W, Blawert C, Atrens A, Lyon P. Stress corrosion cracking of rare-earth containing magnesium alloys ZE41, QE22 and Elektron 21 (EV31A) compared with AZ80. Mat Sci Eng A. 2008;480:529–39.

    Article  Google Scholar 

  35. Aghion E, Levy G, Ovadia S. In-vivo behavior of biodegradable Mg-Nd-Y-Zr-Ca alloy. J Mater Sci-Mater M. 2012;23:805–12.

    Article  Google Scholar 

  36. Sojka J, Weaver CM. Magnesium supplementation and osteoporosis. Nutr Rev. 1995;53:71–4.

    Article  Google Scholar 

  37. Li HF, Pang SJ, Liu Y, Sun LL, Liaw PK, Zhang T. Biodegradable Mg–Zn–Ca–Sr bulk metallic glasses with enhanced corrosion performance for biomedical applications. Mater Des. 2015;67:9–19.

    Article  Google Scholar 

  38. Byun JM, Yu JM, Kim DK, Kim TY, Jung WS, Kim YD. Corrosion behavior of Mg2Zn11 and MgZn2 single phases. Korean J Met Mater. 2013;51:416–9.

    Article  Google Scholar 

  39. Diler E, Rioual S, Lescop B, Thierry D, Rouvellou B. Chemistry of corrosion products of Zn and MgZn pure phases under atmospheric conditions. Corros Sci. 2012;65:178–86.

    Article  Google Scholar 

  40. Prosek T, Nazarov A, Bexell U, Thierry D, Serak J. Corrosion mechanism of model zinc–magnesium alloys in atmospheric conditions. Corros Sci. 2008;50:2216–31.

    Article  Google Scholar 

  41. Yang Z, Shi D, Wen B, Melnik R. Structural, elastic, electronic properties and heats of formation of Ca-Zn intermetallic from first principles calculations. J Alloy Compd. 2012;524:53–8.

    Article  Google Scholar 

  42. Hakimi O, Ventura Y, Goldman J, Vago R, Aghion E. Porous biodegradable EW62 medical implants resist tumor cell growth. Mat Sci Eng C. 2016;61:516–25.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Galit Katarivas Levy.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Katarivas Levy, G., Leon, A., Kafri, A. et al. Evaluation of biodegradable Zn-1%Mg and Zn-1%Mg-0.5%Ca alloys for biomedical applications. J Mater Sci: Mater Med 28, 174 (2017). https://doi.org/10.1007/s10856-017-5973-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10856-017-5973-9

Navigation