Skip to main content
Log in

A suspended carbon fiber culture to model myelination by human Schwann cells

  • Tissue Engineering Constructs and Cell Substrates
  • Original Research
  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Understanding of myelination/remyelination process is essential to guide tissue engineering for nerve regeneration. In vitro models currently used are limited to cell population studies and cannot easily identify individual cell contribution to the process. We established a novel model to study the contribution of human Schwann cells to the myelination process. The model avoids the presence of neurons in culture; Schwann cells respond solely to the biophysical properties of an artificial axon. The model uses a single carbon fiber suspended in culture media far from the floor of the well. The fiber provides an elongated structure of defined diameter with 360-degree of surface available for human Schwann cells to wrap around. This model enabled us to spatially and temporally track the myelination by individual Schwann cells along the fiber. We observed cell attachment, elongation and wrapping over a period of 9 days. Cells remained alive and expressed Myelin Basic Protein and Myelin Associated Glycoprotein as expected. Natural and artificial molecules, and external physical factors (e.g., p atterned electrical impulses), may be tested with this model as possible regulators of myelination.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Althaus HH, Montz H, Neyhoff V. Isolation and cultivation of mature oligodendroglial cells. Naturwissenschaften. 1984;71:309–15.

    Article  Google Scholar 

  2. Bullock PN, Rome LH. Glass micro-fibers: a model system for study of early events in myelination. J Neurosci Res. 1990;27:383–93.

    Article  Google Scholar 

  3. Howe CL. Coated glass and vicryl microfibers as artificial axons. Cells Tissues Organs. 2006;183:180–94.

    Article  Google Scholar 

  4. Gertz CC, Leach MK, Birrell LK, Martin DC, Feldman EL, Corey JM. Accelerated neuritogenesis and maturation of primary spinal motor neurons in response to nanofibers. Dev Neurobiol. 2010;70(8):589–603.

    Article  Google Scholar 

  5. Lee S, Leach MK, Redmond SA, Chong SY, Mellon SH, Tuck SJ, Feng ZQ, Corey JM, Chan JR. A culture system to study oligodendrocyte myelination processes using engineered nanofibers. Nat Methods. 2012;9(9):917–22.

    Article  Google Scholar 

  6. Shah S, Solanki A, Lee KB. Nanotechnology-based approaches for guiding neural regeneration. Acc Chem Res. 2016;49(1):17–26.

    Article  Google Scholar 

  7. Zhang K, Zheng H, Liang S, Gao C. Aligned PLLA nanofibrous scaffolds coated with graphene oxide for promoting neural cell growth. Acta Biomater. 2016;37:131–42.

    Article  Google Scholar 

  8. Nune M, Krishnan UM, Sethuraman S. PLGA nanofibers blended with designer self-assembling peptides for peripheral neural regeneration. Mater Sci Eng C Mater Biol Appl. 2016;62:329–37.

    Article  Google Scholar 

  9. Zhang H, Wang K, Xing Y, Yu Q. Lysine-doped polypyrrole/spider silk protein/poly(l-lactic) acid containing nerve growth factor composite fibers for neural application. Mater Sci Eng C Mater Biol Appl. 2015;56:564–73.

    Article  Google Scholar 

  10. Razavi S, Zarkesh-Esfahani H, Morshed M, Vaezifar S, Karbasi S, Golozar MA. Nanobiocomposite of poly(lactide-co-glycolide)/chitosan electrospun scaffold can promote proliferation and transdifferentiation of Schwann-like cells from human adipose-derived stem cells. J Biomed Mater Res A. 2015;103(8):2628–34.

    Article  Google Scholar 

  11. Diao HJ, Low WC, Milbreta U, Lu QR, Chew SY. Nanofiber-mediated microRNA delivery to enhance differentiation and maturation of oligodendroglial precursor cells. J Control Release. 2015;208:85–92.

    Article  Google Scholar 

  12. Gnavi S, Fornasari BE, Tonda-Turo C, Laurano R, Zanetti M, Ciardelli G, Geuna S. The Effect of electrospun gelatin fibers alignment on Schwann cell and Axon behavior and organization in the perspective of artificial nerve design. Int J Mol Sci. 2015;16(6):12925–42.

    Article  Google Scholar 

  13. Wu HB, Bremner DH, Nie HL, Quan J, Zhu LM. Electrospun polyvinyl alcohol/carbon dioxide modified polyethyleneimine composite nano fiber scaffolds. J Biomater Appl. 2015;29(10):1407–17.

    Article  Google Scholar 

  14. Radhakrishnan J, Kuppuswamy AA, Sethuraman S, Subramanian A. Topographic cue from electrospun scaffolds regulate Myelin-related gene expressions in Schwann cells. J Biomed Nanotechnol. 2015;11(3):512–21.

    Article  Google Scholar 

  15. Gnavi S, Fornasari BE, Tonda-Turo C, Ciardelli G, Zanetti M, Geuna S, Perroteau I. The influence of electrospun fibre size on Schwann cell behavior and axonal outgrowth. Mater Sci Eng C Mater Biol Appl. 2015;48:620–31.

    Article  Google Scholar 

  16. Zheng J, Kontoveros D, Lin F, Hua G, Reneker DH, Becker ML, Willits RK. Enhanced Schwann cell attachment and alignment using one-pot “dual click” GRGDS and YIGSR derivatized nanofibers. Biomacromolecules. 2015;16(1):357–63.

    Article  Google Scholar 

  17. Gu X, Ding F, Williams DF. Neural tissue engineering options for peripheral nerve regeneration. Biomaterials. 2014;35(24):6143–56.

    Article  Google Scholar 

  18. Biazar E, Heidari Keshel S. Development of chitosan-crosslinked nanofibrous PHBV guide for repair of nerve defects. Artif Cells Nanomed Biotechnol. 2014;42(6):385–91.

    Article  Google Scholar 

  19. Masaeli E, Wieringa PA, Morshed M, Nasr-Esfahani MH, Sadri S, van Blitterswijk CA, Moroni L. Peptide functionalized polyhydroxyalkanoate nanofibrous scaffolds enhance Schwann cells activity. Nanomedicine. 2014;10(7):1559–69.

    Article  Google Scholar 

  20. Xia H, Chen Q, Fang Y, Liu D, Zhong D, Wu H, Xia Y, Yan Y, Tang W, Sun X. Directed neurite growth of rat dorsal root ganglion neurons and increased colocalization with Schwann cells on aligned poly(methyl methacrylate) electrospun nanofibers. Brain Res. 2014;1565:18–27.

    Article  Google Scholar 

  21. Weightman A, Jenkins S, Pickard M, Chari D, Yang Y. Alignment of multiple glial cell populations in 3D nanofiber scaffolds: toward the development of multicellular implantable scaffolds for repair of neural injury. Nanomedicine. 2014;10(2):291–5.

    Article  Google Scholar 

  22. Jeffries EM, Wang Y. Incorporation of parallel electrospun fibers for improved topographical guidance in 3D nerve guides. Biofabrication. 2013;5(3):035015.

    Article  Google Scholar 

  23. Ren YJ, Zhang S, Mi R, Liu Q, Zeng X, Rao M, Hoke A, Mao HQ. Enhanced differentiation of human neural crest stem cells towards the Schwann cell lineage by aligned electrospun fiber matrix. Acta Biomater. 2013;9(8):7727–36.

    Article  Google Scholar 

  24. Junka R, Valmikinathan CM, Kalyon DM, Yu X. Laminin functionalized biomimetic nanofibers for nerve tissue engineering. J Biomater Tissue Eng. 2013;3(4):494–502.

    Article  Google Scholar 

  25. Jain S, Webster TJ, Sharma A, Basu B. Intracellular reactive oxidative stress, cell proliferation and apoptosis of Schwann cells on carbon nanofibrous substrates. Biomaterials. 2013;34(21):4891–901.

    Article  Google Scholar 

  26. Pesirikan N, Chang W, Zhang X, Xu J, Yu X. Characterization of schwann cells in self-assembled sheets from thermoresponsive substrates. Tissue Eng Part A. 2013;19(13–14):1601–9.

    Article  Google Scholar 

  27. Jain S, Sharma A, Basu B. In vitro cytocompatibility assessment of amorphous carbon structures using neuroblastoma and Schwann cells. J Biomed Mater Res B Appl Biomater. 2013;101(4):520–31.

    Article  Google Scholar 

  28. Zhan X, Gao M, Jiang Y, Zhang W, Wong WM, Yuan Q, Su H, Kang X, Dai X, Zhang W, Guo J, Wu W. Nanofiber scaffolds facilitate functional regeneration of peripheral nerve injury. Nanomedicine. 2013;9(3):305–15.

    Article  Google Scholar 

  29. Huang C, Niu H, Wu C, Ke Q, Mo X, Lin T. Disc-electrospun cellulose acetate butyrate nanofibers show enhanced cellular growth performances. J Biomed Mater Res A. 2013;101(1):115–22.

    Article  Google Scholar 

  30. Masaeli E, Morshed M, Nasr-Esfahani MH, Sadri S, Hilderink J, van Apeldoorn A, van Blitterswijk CA, Moroni L. Fabrication, characterization and cellular compatibility of poly(hydroxy alkanoate) composite nanofibrous scaffolds for nerve tissue engineering. PLoS ONE. 2013;8(2):e57157

    Article  Google Scholar 

  31. Subramanian A, Krishnan UM, Sethuraman S. Fabrication, characterization and in vitro evaluation of aligned PLGA-PCL nanofibers for neural regeneration. Ann Biomed Eng. 2012;40(10):2098–110.

    Article  Google Scholar 

  32. Hu A, Zuo B, Zhang F, Lan Q, Zhang H. Electrospun silk fibroin nanofibers promote Schwann cell adhesion, growth and proliferation. Neural Regen Res. 2012;7(15):1171–8.

    Google Scholar 

  33. Wang Y, Zhao Z, Zhao B, Qi HX, Peng J, Zhang L, Xu WJ, Hu P, Lu SB. Biocompatibility evaluation of electrospun aligned poly (propylene carbonate) nanofibrous scaffolds with peripheral nerve tissues and cells in vitro. Chin Med J. 2011;124(15):2361–6.

    Google Scholar 

  34. Zhu Y, Wang A, Patel S, Kurpinski K, Diao E, Bao X, Kwong G, Young WL, Li S. Engineering bi-layer nanofibrous conduits for peripheral nerve regeneration. Tissue Eng Part C Methods. 2011;17(7):705–15.

    Article  Google Scholar 

  35. Cooper A, Bhattarai N, Kievit FM, Rossol M, Zhang M. Electrospinning of chitosan derivative nanofibers with structural stability in an aqueous environment. Phys Chem Chem Phys. 2011;13(21):9969–72.

    Article  Google Scholar 

  36. Gelain F, Panseri S, Antonini S, Cunha C, Donega M, Lowery J, Taraballi F, Cerri G, Montagna M, Baldissera F, Vescovi A. Transplantation of nanostructured composite scaffolds results in the regeneration of chronically injured spinal cords. ACS Nano. 2011;5(1):227–36.

    Article  Google Scholar 

  37. Valmikinathan CM, Hoffman J, Yu X. Impact of scaffold micro and macro architecture on Schwann cell proliferation under dynamic conditions in a rotating wall vessel bioreactor. Mater Sci Eng C Mater Biol Appl. 2011;31(1):22–9.

    Article  Google Scholar 

  38. de Guzman RC, Loeb JA, VandeVord PJ. Electrospinning of matrigel to deposit a basal lamina-like nanofiber surface. J Biomater Sci Polym Ed. 2010;21(8–9):1081–101.

    Article  Google Scholar 

  39. Wang W, Itoh S, Konno K, Kikkawa T, Ichinose S, Sakai K, Ohkuma T, Watabe K. Effects of Schwann cell alignment along the oriented electrospun chitosan nanofibers on nerve regeneration. J Biomed Mater Res A. 2009;91(4):994–1005.

    Article  Google Scholar 

  40. Gupta D, Venugopal J, Prabhakaran MP, Dev VR, Low S, Choon AT, Ramakrishna S. Aligned and random nanofibrous substrate for the in vitro culture of Schwann cells for neural tissue engineering. Acta Biomater. 2009;5(7):2560–9.

    Article  Google Scholar 

  41. Prabhakaran MP, Venugopal J, Chan CK, Ramakrishna S. Surface modified electrospun nanofibrous scaffolds for nerve tissue engineering. Nanotechnology. 2008;19(45):455102.

    Article  Google Scholar 

  42. Corey JM, Lin DY, Mycek KB, Chen Q, Samuel S, Feldman EL, Martin DC. Aligned electrospun nanofibers specify the direction of dorsal root ganglia neurite growth. J Biomed Mater Res A. 2007;83(3):636–45.

    Article  Google Scholar 

  43. Schnell E, Klinkhammer K, Balzer S, Brook G, Klee D, Dalton P, Mey J. Guidance of glial cell migration and axonal growth on electrospun nanofibers of poly-epsilon-caprolactone and a collagen/poly-epsilon-caprolactone blend. Biomaterials. 2007;28(19):3012–25.

    Article  Google Scholar 

  44. Goyal R, Guvendiren M, Freeman O, Mao Y, Kohn J. Optimization of polymer-ECM composite scaffolds for tissue engineering: effect of cells and culture conditions on polymeric nanofiber mats. J Funct Biomater. 2017;8(1): doi:10.3390/jfb8010001.

  45. Rickett T, Li J, Patel M, Sun W, Leung G, Shi R. Ethyl-cyanoacrylate is acutely nontoxic and provides sufficient bond strength for anastomosis of peripheral nerves. J Biomed Mater Res A. 2009;90(3):750–4.

    Article  Google Scholar 

  46. Merolli A, Marceddu S, Rocchi L, Catalano F. In vivo study of ethyl-2-cyanoacrylate applied in direct contact with nerves regenerating in a novel nerve-guide. J Mater Sci Mater Med. 2010;21(6):1979–87.

    Article  Google Scholar 

  47. Merolli A, Rocchi L, De Spirito M, Federico F, Morini A, Mingarelli L, Fanfani F. Debris of carbon-fibers originated from a CFRP (pEEK) wrist-plate triggered a destruent synovitis in human. J Mater Sci Mater Med. 2016;27(3):50.

    Article  Google Scholar 

  48. Duncan D. The importance of diameter as a factor in myelination. Science. 1934;79(2051):363.

    Article  Google Scholar 

  49. Voyvodic JT. Target size regulates calibre and myelination of sympathetic axons. Nature. 1989;342:430–2.

    Article  Google Scholar 

  50. Stevens B, Tanner S, Fields RD. Control of myelination by specific patterns of neural impulses. J Neurosci. 1998;18(22):9303–11.

    Google Scholar 

  51. Fields RD. A new mechanism of nervous system plasticity: activity-dependent myelination. Nat Rev Neurosci. 2015;16(12):756–67.

    Article  Google Scholar 

  52. Poitelon Y, Lopez-Anido C, Catignas K, Berti C, Palmisano M, Williamson C, Ameroso D, Abiko K, Hwang Y, Gregorieff A, Wrana JL, Asmani M, Zhao R, Sim FJ, Wrabetz L, Svaren J, Feltri ML. YAP and TAZ control peripheral myelination and the expression of laminin receptors in Schwann cells. Nat Neurosci. 2016;19(7):879–87.

    Article  Google Scholar 

  53. Snaidero N, Simons M. Myelination at a glance. J Cell Sci. 2014;127:2999–3004.

    Article  Google Scholar 

  54. Ioannidou K, Anderson KI, Strachan D, Edgar JM, Barnett SC. Time-lapse imaging of the dynamics of CNS glial-axonal interactions in vitro and ex vivo. PLoS ONE. 2012;7(1):e30775

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Merolli.

Ethics declarations

Conflict of interest

Authors declare they have no competing interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Merolli, A., Mao, Y. & Kohn, J. A suspended carbon fiber culture to model myelination by human Schwann cells. J Mater Sci: Mater Med 28, 57 (2017). https://doi.org/10.1007/s10856-017-5867-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10856-017-5867-x

Keywords

Navigation