Skip to main content
Log in

CeF3-ZnO scintillating nanocomposite for self-lighted photodynamic therapy of cancer

  • Engineering and Nano-engineering Approaches for Medical Devices
  • Original Research
  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

We report on the synthesis and characterization of a composite nanostructure based on the coupling of cerium fluoride (CeF3) and zinc oxide (ZnO) for applications in self-lighted photodynamic therapy. Self-lighted photodynamic therapy is a novel approach for the treatment of deep cancers by low doses of X-rays. CeF3 is an efficient scintillator: when illuminated by X-rays it emits UV light by fluorescence at 325 nm. In this work, we simulate this effect by exciting directly CeF3 fluorescence by UV radiation. ZnO is photo-activated in cascade, to produce reactive oxygen species. This effect was recently demonstrated in a physical mixture of distinct nanoparticles of CeF3 and ZnO [Radiat. Meas. (2013) 59:139–143]. Oxide surface provides a platform for rational functionalization, e.g., by targeting molecules for specific tumors. Our composite nanostructure is stable in aqueous media with excellent optical coupling between the two components; we characterize its uptake and its good cell viability, with very low intrinsic cytotoxicity in dark.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Juzenas P, Chen W, Sun Y-P, Coelho MAN, Generalov R, Generalova N, et al. Quantum dots and nanoparticles for photodynamic and radiation therapies of cancer. Adv Drug Deliv Rev. 2008;60:1600–14.

    Article  Google Scholar 

  2. Dolmans DEJGJ, Fukumura D, Jain RK. TIMELINE: Photodynamic therapy for cancer. Nat Rev Cancer 2003;3:380–7.

    Article  Google Scholar 

  3. Bonnett R. Photosensitizers of the porphyrin and phthalocyanine series for photodynamic therapy. Chem Soc Rev. 1995;24:19

    Article  Google Scholar 

  4. Chen W, Zhang J Using nanoparticles to enable simultaneous radiation and photodynamic therapies for cancer treatment. J Nanosci Nanotechnol. 2006;6:1159–66.

    Article  Google Scholar 

  5. Liu Y, Chen W, Wang S, Joly AG. Investigation of water-soluble X-ray luminescence nanoparticles for photodynamic activation. Appl Phys Lett. 2008;92:043901.

    Article  Google Scholar 

  6. Lal S, Clare SE, Halas NJ Nanoshell-enabled photothermal cancer therapy: impending clinical impact. Acc Chem Res. 2008;41:1842–51.

    Article  Google Scholar 

  7. Llusar M, Sanchez C. Inorganic and hybrid nanofibrous materials templated with organogelators. Chem Mater. 2008;20:782–820.

    Article  Google Scholar 

  8. Zou X, Yao M, Ma L, Hossu M, Han X, Juzenas P, et al. X-ray-induced nanoparticle-based photodynamic therapy of cancer. Nanomedicine 2014;9:2339–51.

    Article  Google Scholar 

  9. Clement S, Deng W, Camilleri E, Wilson BC, Goldys EM. X-ray induced singlet oxygen generation by nanoparticle-photosensitizer conjugates for photodynamic therapy: determination of singlet oxygen quantum yield. Sci Rep. 2016;6:19954.

    Article  Google Scholar 

  10. Rossi F, Bedogni E, Bigi F, Rimoldi T, Cristofolini L, Pinelli S, et al. Porphyrin conjugated SiC/SiOx nanowires for X-ray-excited photodynamic therapy. Sci Rep. 2015;5:7606

    Article  Google Scholar 

  11. SOSG kit, produced by Molecular Probes and commercialized by Life Technologies, product information: “Singlet Oxyg. Sens. Green Reagent”, Revis. 30/01/2004, http://tools.lifetechnologies.com/content/sfs/manuals/mp36002.pdf. Accessed 2 May 2016.

  12. Kuimova MK, Yahioglu G, Ogilby PR. Singlet Oxygen in a Cell: Spatially Dependent Lifetimes and Quenching Rate Constants. J Am Chem Soc. 2009;131:332–40.

    Article  Google Scholar 

  13. Gai S, Yang P, Li X, Li C, Wang D, Dai Y, et al. Monodisperse CeF3, CeF3:Tb3+, and CeF3:Tb3+@LaF3 core/shell nanocrystals: synthesis and luminescent properties. J Mater Chem. 2011;21:14610.

    Article  Google Scholar 

  14. Clement S, Deng W, Drozdowicz-Tomsia K, Liu D, Zachreson C, Goldys EM. Bright, water-soluble CeF3 photo-, cathodo-, and X-ray luminescent nanoparticles. J Nanoparticle Res. 2015;17:7

    Article  Google Scholar 

  15. Zhu L, Li Q, Liu X, Li J, Zhang Y, Meng J, et al. Morphological control and luminescent properties of CeF3 nanocrystals. J Phys Chem. C 2007;111:5898–903.

    Article  Google Scholar 

  16. Moses WW, Derenzo SE. Cerium fluoride, a new fast, heavy scintillator. IEEE Trans Nucl Sci. 1989;36:173–6.

    Article  Google Scholar 

  17. Jacobsohn LG, Sprinkle KB, Roberts SA, Kucera CJ, James TL, Yukihara EG, et al. Fluoride nanoscintillators. J Nanomater. 2011;2011:1–6.

    Article  Google Scholar 

  18. Sakthivel S, Neppolian B, Shankar MV, Arabindoo B, Palanichamy M, Murugesan V. Solar photocatalytic degradation of azo dye: comparison of photocatalytic efficiency of ZnO and TiO2. Sol Energy Mater Sol Cells. 2003;77:65–82.

    Article  Google Scholar 

  19. Villani M, Rimoldi T, Calestani D, Lazzarini L, Chiesi V, Casoli F, et al. Composite multifunctional nanostructures based on ZnO tetrapods and superparamagnetic Fe3O4 nanoparticles. Nanotechnology 2013;24:135601.

    Article  Google Scholar 

  20. Kolb HC, Sharpless KB. The growing impact of click chemistry on drug discovery. Drug Discov. Today 2003;8:1128–37.

    Article  Google Scholar 

  21. Mitra S, S B, Patra P, Chandra S, Debnath N, Das S, et al. Porous ZnO nanorod for targeted delivery of doxorubicin: in vitro and in vivo response for therapeutic applications. J Mater Chem. 2012;22:24145.

    Article  Google Scholar 

  22. Pan J, Sun S-K, Wang Y, Fu Y-Y, Zhang X, Zhang Y, et al. Facile preparation of hyaluronic acid and transferrin co-modified Fe3O4 nanoparticles with inherent biocompatibility for dual-targeting magnetic resonance imaging of tumors in vivo. Dalt Trans. 2015;44:19836–43.

    Article  Google Scholar 

  23. Sahi S, Chen W. Luminescence enhancement in CeF3/ZnO nanocomposites for radiation detection. Radiat Meas. 2013;59:139–43.

    Article  Google Scholar 

  24. Sun Z, Li Y, Zhang X, Yao M, Ma L, Chen W. Luminescence and Energy transfer in water soluble CeF3 and CeF3:Tb3+ nanoparticles. J Nanosci Nanotechnol. 2009;9:6283–91.

    Article  Google Scholar 

  25. Haldar KK, Sen T, Patra A. Au@ZnO core-shell nanoparticles are efficient energy acceptors with organic dye donors. J Phys Chem. C 2008;112:11650–6.

    Article  Google Scholar 

  26. Kovács M, Valicsek Z, Tóth J, Hajba L, Makó É, Halmos P, et al. Multi-analytical approach of the influence of sulphate ion on the formation of cerium(III) fluoride nanoparticles in precipitation reaction. Colloids Surfaces A Physicochem Eng Asp. 2009;352:56–62.

    Article  Google Scholar 

  27. Sun Z, Li Y, Zhang X, Yao M, Ma L, Chen W. Luminescence and energy transfer in water soluble CeF3 and CeF3:Tb3+ nanoparticles. J Nanosci Nanotechnol. 2009;9:6283–91.

    Article  Google Scholar 

  28. Bauman RP, Porto SPS. Lattice vibrations and structure of rare-earth fluorides. Phys Rev. 1967;161:842–7.

    Article  Google Scholar 

  29. Sato-Berrú RY, Vázquez-Olmos A, Fernández-Osorio AL, Sotres-Martínez S. Micro-Raman investigation of transition-metal-doped ZnO nanoparticles. J Raman Spectrosc. 2007;38:1073–6.

    Article  Google Scholar 

  30. Wang YS, Thomas PJ, O’Brien P. Nanocrystalline ZnO with Ultraviolet Luminescence. J Phys Chem. B 2006;110:4099–104.

    Article  Google Scholar 

  31. Djurišić AB, Leung YH. Optical properties of ZnO nanostructures. Small. 2006;2:944–61.

    Article  Google Scholar 

  32. Porter KR, Todaro GJ, Fonte V. A scanning electron microscope study of surface features of viral and spontaneous transformants of mouse BALB/3T3 cells. J Cell Biol. 1973;59:633–42.

    Article  Google Scholar 

  33. Conner SD, Schmid SL. Regulated portals of entry into the cell. Nature. 2003;422:37–44.

    Article  Google Scholar 

  34. Zhang S, Gao H, Bao G. Physical principles of nanoparticle cellular endocytosis. ACS Nano. 2015;9:8655–71.

    Article  Google Scholar 

  35. Popović ZV, Dohčević-Mitrović Z, Cros A, Cantarero A. Raman scattering study of the anharmonic effects in CeO 2− y nanocrystals. J Phys Condens Matter. 2007;19:496209.

    Article  Google Scholar 

  36. Porto SPS, Fleury Pa, Damen TC. Raman spectra of TiO2, MgF2, ZnF2, FeF2, and MnF2. Phys Rev. 1967;154:522–6.

    Article  Google Scholar 

  37. Irimpan L, Nampoori VPN, Radhakrishnan P, Deepthy A, Krishnan B. Size dependent fluorescence spectroscopy of nanocolloids of ZnO. J Appl Phys. 2007;102:063524.

    Article  Google Scholar 

  38. Riwotzki K, Meyssamy H, Schnablegger H, Kornowski A, Haase M. Liquid-phase synthesis of colloids and redispersible powders of strongly luminescing LaPO4:Ce,Tb nanocrystals. Angew Chemie Int Ed. 2001;40:573–6.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luigi Cristofolini.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rimoldi, T., Orsi, D., Lagonegro, P. et al. CeF3-ZnO scintillating nanocomposite for self-lighted photodynamic therapy of cancer. J Mater Sci: Mater Med 27, 159 (2016). https://doi.org/10.1007/s10856-016-5769-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10856-016-5769-3

Navigation