Skip to main content

Advertisement

Log in

Iron and iron-based alloys for temporary cardiovascular applications

  • Engineering and Nano-engineering Approaches for Medical Devices
  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

In the last decade, biodegradable metals have emerged as a topic of interest for particular biomedical applications which require high strength to bulk ratio, including for cardiovascular stents. The advantages of biodegradable materials are related to the reduction of long term risks associated with the presence of permanent metal implants, e.g. chronic inflammation and in-stent restenosis. From a structural point of view, the analysis of the literature reveals that iron-based alloys used as temporary biodegradable stents have several advantages over Mg-based alloys in terms of ductility and strength. Efforts on the modification and tunability of iron-based alloys design and compositions have been mainly focused on controlling the degradation rate while retaining the mechanical integrity within a reasonable period. The early pre-clinical results of many iron-based alloys seem promising for future implants developments. This review discusses the available literature focusing mainly on: (i) Fe and Fe-based alloys design and fabrication techniques; (ii) in vitro and in vivo performance; (iii) cytotoxicity and cell viability tests.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Serruys PW, Rensing BJ. Handbook of coronary stents. 4th ed. London: Taylor & Francis; 2001.

    Google Scholar 

  2. Tsuji T, Tamai H, Igaki K, Kyo E, Kosuga K, Hata T, Nakamura T, Fujita S, Takeda S, Motohara S, Uehata H. Biodegradable stents as a platform to drug loading. Int J Cardiovasc Interv. 2003;5:13–6.

    Google Scholar 

  3. Tsuji T, Tamai H, Igaki K, Kyo E, Kosuga K, Hata T, Okada M, Nakamura T, Komori H, Motohara S, Uehata H. Biodegradable polymeric stents. Curr Interv Cardiol Rep. 2001;3(1):10–7.

    Article  Google Scholar 

  4. Huang T, Cheng J, Zheng YF. In vitro degradation and biocompatibility of Fe–Pd and Fe–Pt composites fabricated by spark plasma sintering. Mater Sci Eng. 2014;35:43–53.

    Article  Google Scholar 

  5. Moravej M, Mantovani D. Biodegradable metals for cardiovascular stent application: interests and new opportunities. Int J Mol Sci. 2011;12:4250–70.

    Article  Google Scholar 

  6. Erbel R, Di Mario C, Bartunek J, Bonnier J, de Bruyne B, Erbeli FR, Erne P, Haude M, Heublein B, Horrigan M, Ilsley C, Bose D, Koolen J, Luscher TF, Weissman N, Waksman R. Temporary scaffolding of coronary arteries with bioabsorbable magnesium stents: a prospective, non-randomized multicentre trial. Lancet. 2007;369:1869–75.

    Article  Google Scholar 

  7. Waksman R, Pakala R, Kuchulakanti P, Baffour R, Hellinga D, Seabron R, Tio FO, Wittchow E, Hartwig S, Harder C, Rohde R, Heublein B, Andreae A, Waldmann KH, Haverich A. Safety and efficacy of bioabsorbable magnesium alloy stents in porcine coronary arteries. Catheter Cardiovasc Interv. 2006;68:607–17.

    Article  Google Scholar 

  8. Gu X, Zheng Y, Cheng Y, Zhong S, Xi T. In vitro corrosion and biocompatibility of binary magnesium alloys. Biomaterials. 2009;30:484–98.

    Article  Google Scholar 

  9. Witte F, Kaese V, Haferkamp H, Switzer E, Meyer-Lindenberg A, Wirth CJ, Windhagen H. In vivo corrosion of four magnesium alloys and the associated bone response. Biomaterials. 2005;26:3557–63.

    Article  Google Scholar 

  10. Di Mario C, Griffiths H, Goktekin O, Peeters N, Verbist J, Bosiers M, Deloose K, Heublein B, Rohde R, Kasese V, Ilsley C, Erbel R. Drug-eluting bioabsorbable magnesium stent. J Interv Cardiol. 2004;17:391–5.

    Article  Google Scholar 

  11. Auerbach M, Ballard H. Clinical use of intravenous iron: administration, efficacy, and safety. Hematology. 2010;2010:338–47.

    Article  Google Scholar 

  12. Ulum MF, Arafat A, Noviana D, Yusop AH, Nasution AK, Abdul Kadir MR, Hermawan H. In vitro and in vivo degradation evaluation of novel iron-bioceramic composites for bone implant applications. Mater Sci Eng. 2014;36:336–44.

    Article  Google Scholar 

  13. Wen Z, Zhang L, Chen C, Liu Y, Wu C, Dai C. A construction of novel iron-foam-based calcium phosphate/chitosan coating biodegradable scaffold material. Mater Sci Eng. 2013;33:1022–31.

    Article  Google Scholar 

  14. Zhu S, Huang N, Xu L, Zhang Y, Liu H, Sun H, Leng H. Biocompatibility of pure iron: in vitro assessment of degradation kinetics and cytotoxicity on endothelial cells. Mater Sci Eng. 2009;29:1589–92.

    Article  Google Scholar 

  15. Peuster M, Hesse C, Schloo T, Fink C, Beerbaum P, von Schnakenburg C. Long-term biocompatibility of a corrodible peripheral iron stent in the porcine descending aorta. Biomaterials. 2006;27:4955–62.

    Article  Google Scholar 

  16. Peuster M, Wohlsein P, Brugmann M, Ehlerding M, Seidler K, Fink C, Brauer H, Fischer A, Hausdorf G. A novel approach to temporary stenting: degradable cardiovascular stents produced from corrodible metal-results 6–18 months after implantation into New Zealand white rabbits. Heart. 2001;86:563–9.

    Article  Google Scholar 

  17. Hermawan H, Dubé D, Mantovani D. Developments in metallic biodegradable stents. Acta Biomater. 2010;6(5):1693–7.

    Article  Google Scholar 

  18. Schinhammer M, Hänzi AC, Löffler JF, Uggowitzer PJ. Design strategy for biodegradable Fe-based alloys for medical applications. Acta Biomater. 2010;6:1705–13.

    Article  Google Scholar 

  19. Moszner F, Sologubenkoa A, Schinhammer M, Lerchbacher C, Hänzi A, Leitnerc H, et al. Precipitation hardening of biodegradable Fe–Mn–Pd alloys. Acta Mater. 2011;59:981–91.

    Article  Google Scholar 

  20. Schinhammer M, Pecnik C, Rechberger F, Hänzi A, Löffler JF, Uggowitzer PJ. Recrystallization behavior, microstructure evolution and mechanical properties of biodegradable Fe–Mn–C (–Pd) TWIP alloys. Acta Mater. 2012;60:2746–56.

    Article  Google Scholar 

  21. Liu B, Zheng YF, Ruan L. In vitro investigation of Fe30Mn6Si shape memory alloy as potential biodegradable metallic material. Mater Lett. 2011;65:540–3.

    Article  Google Scholar 

  22. Wang YB, Li HF, Zheng YF, Li M. Corrosion performances in simulated body fluids and cytotoxicity evaluation of Fe-based bulk metallic glasses. Mater Sci Eng. 2012;32:599–606.

    Article  Google Scholar 

  23. Jynge P, Brurok H, Asplund A, Towart R, Refsum H, Karlsson JOG. Cardiovascular safety of MnDPDP and MnCl2. Acta Radiol. 1997;38:740–9.

    Article  Google Scholar 

  24. Crossgrove J, Zheng W. Manganese toxicity upon overexposure. NMR Biomed. 2004;17:544–53.

    Article  Google Scholar 

  25. Ratner BD. Biomaterials science: an introduction to materials in medicine. Amsterdam, Boston: Elsevier Academic Press; 2004.

    Google Scholar 

  26. Callister WD, Rethwisch DG. Materials science and engineering: an introduction. 8th ed. Hoboken: Wiley; 2009.

    Google Scholar 

  27. Mitchell BS. An introduction to materials engineering and science for chemical and materials engineers. Hoboken: Wiley; 2004.

    Google Scholar 

  28. Liu B, Zheng YF. Effects of alloying elements (Mn Co, Al, W, Sn, B, C and S) on biodegradability and in vitro biocompatibility of pure iron. Acta Biomater. 2011;7:1407–20.

    Article  Google Scholar 

  29. Allenstein U, Ma Y, Arabi-Hashemi A, Zink M, Mayr SG. Fe–Pd based ferromagnetic shape memory actuators for medical applications: biocompatibility, effect of surface roughness and protein coatings. Acta Biomater. 2013;9:5845–53.

    Article  Google Scholar 

  30. Kock I, Hamann S, Brunken H, Edler T, Mayr SG, Ludwig A. Development and characterization of Fe70Pd30 ferromagnetic shape memory splats. Intermetallics. 2010;18(5):877–82.

    Article  Google Scholar 

  31. Claussen I, Mayr SG. Mechanical properties and twin boundary drag in FePd ferromagnetic shape memory foils—experiments and ab initio modeling. New J Phys. 2011;13(6):063034.

    Article  Google Scholar 

  32. Cheng J, Zheng YF. In vitro study on newly designed biodegradable Fe-X composites (X = W, CNT) prepared by spark plasma sintering. J Biomed Mater Res B. 2013;101B:485–97.

    Article  Google Scholar 

  33. Wegener B, Sievers B, Utzschneider S, Peter Müller P, Jansson V, Rößler S, Nies B, Stephani G, Kieback B, Quadbeck P. Microstructure, cytotoxicity and corrosion of powder-metallurgical iron alloys for biodegradable bone replacement materials. Mater Sci Eng. 2011;176:1789–96.

    Article  Google Scholar 

  34. Hermawan H, Dubé D, Mantovani D. Degradable metallic biomaterials: design and development of Fe–Mn alloys for stents. J Biomed Mater Res A. 2010;93:1–11.

    Google Scholar 

  35. Moravej M, Prima F, Fiset M, Mantovani D. Electroformed iron as new biomaterial for degradable stents: development process and structure–properties relationship. Acta Biomater. 2010;6:1726–35.

    Article  Google Scholar 

  36. Nie FL, Zheng YF, Wei SC, Hu C, Yang G. In vitro corrosion, cytotoxicity and hemocompatibility of bulk nanocrystalline pure iron. Biomed Mater. 2010;5:065015.

    Article  Google Scholar 

  37. Stolyarov VV, Zhu YT, Lowe TC, Islamgaliev RK, Valiev RZ. A two step SPD processing of ultrafine-grained titanium. Nanostruct Mater. 1999;11(7):947.

    Article  Google Scholar 

  38. Serruys PW, Kutryk MJB, Ong ATL. Drug therapy-coronary-artery stents. N Engl J Med. 2006;354:483–95.

    Article  Google Scholar 

  39. Hermawan H, Dubé D, Mantovani D. Development of degradable Fe–35Mn alloy for biomedical application. Adv Mater Res. 2007;15(17):107–12 [THERMEC 2006 Supplement].

    Article  Google Scholar 

  40. Hermawan H, Alamdari H, Mantovani D, Dube D. Iron–manganese: new class of metallic degradable biomaterials prepared by powder metallurgy. Powder Metall. 2008;51:38–45.

    Article  Google Scholar 

  41. Lin HC, Lin KM, Lin CS, Ouyang TM. The corrosion behavior of Fe-based shape memory alloys. Corros Sci. 2002;44:2013–26.

    Article  Google Scholar 

  42. Moravej M, Purnama A, Fiset M, Couet J, Mantovani D. Electroformed pure iron as a new biomaterial for degradable stents: in vitro degradation and preliminary cell viability studies. Acta Biomater. 2010;6:1843–51.

    Article  Google Scholar 

  43. Schinhammer M, Steiger P, Moszner F, Löffler JF, Uggowitzer PJ. Degradation performance of biodegradable Fe–Mn–C–(Pd) alloys. Mater Sci Eng. 2013;33:1882–93.

    Article  Google Scholar 

  44. ASTM G 31-99. Standard practice for laboratory immersion corrosion testing of metals. Conshohocken: ASTM International; 2001.

    Google Scholar 

  45. Waksman R, Pakala R, Baffour R, Seabron R, Hellinga D, Tio F. Short-term effects of biocorrodible iron stents in porcine coronary arteries. J Interv Cardiol. 2008;21(1):15–20.

    Article  Google Scholar 

  46. Kraus T, Moszner F, Fischerauer S, Fiedler M, Martinelli E, Eichler J, Witte F, Willbold E, Schinhammer M, Meischel M, Uggowitzer PJ, Löffler JF, Weinberg A. Biodegradable Fe-based alloys for use in osteosynthesis: outcome of an in vivo study after 52 weeks. Acta Biomater. 2014;10:3346–53.

    Article  Google Scholar 

  47. Hermawan H, Purnama A, Dube D, Couet J, Mantovani D. Fe–Mn alloys for metallic biodegradable stents: degradation and cell viability studies. Acta Biomater. 2010;6:1852–60.

    Article  Google Scholar 

  48. Zhang EL, Chen HY, Shen F. Biocorrosion properties and blood and cell compatibility of pure iron as a biodegradable biomaterial. J Mater Sci Mater Med. 2010;21:2151–63.

    Article  Google Scholar 

  49. Schinhammer M, Gerber I, Hänzi AC, Uggowitzer PJ. On the cytocompatibility of biodegradable Fe-based alloys. Mater Sci Eng. 2013;33:782–9.

    Article  Google Scholar 

  50. Mueller PP, May T, Perz A, Hauser H, Peuster M. Control of smooth muscle cell proliferation by ferrous iron. Biomaterials. 2006;27:2193–200.

    Article  Google Scholar 

  51. Fussenegger M, Bailey JE, Hauser H, Mueller PP. Genetic optimization of recombinant glycoprotein production by mammalian cells. Trends Biotechnol. 1999;17:35–42.

    Article  Google Scholar 

  52. Purnama A, Mantovani D, Couet J. Caveolin: a possible biomarker of degradable metallic materials toxicity in vascular cells. Acta Biomater. 2013;9:8754–60.

    Article  Google Scholar 

  53. Ma Y, Zink M, Mayr SG. Biocompatibility of single crystalline Fe70Pd30 ferromagnetic shape memory films. Appl Phys Lett. 2010;96(21):213703.

    Article  Google Scholar 

  54. Food and Nutrition Board Institute of Medicine. Dietary reference intakes for vitamin A, vitamin K, arsenic, boron, chromium, copper, iodide, iron, manganese, molybdenum, nickel, silicon, vanadium, and zinc. Washington: National Academic Press; 2002. p. 290–393.

    Google Scholar 

  55. Chen Y, Xu Z, Smith C, Sankar J. Recent advances on the development of magnesium alloys for biodegradable implants. Acta Biomater. 2014;10(11):4561–73.

    Article  Google Scholar 

  56. Gu XN, Zheng YF. A review on magnesium alloys as biodegradable materials. Front Mater Sci China. 2010;4:111–5.

    Article  Google Scholar 

  57. Mani G, Feldman MD, Patel D, Agrawal CM. Coronary stents: a materials perspective. Biomaterials. 2007;28:1689–710.

    Article  Google Scholar 

Download references

Acknowledgments

A. Francis gratefully acknowledges support by the Alexander von Humboldt foundation in form of a fellowship for a research stay for experienced researchers. Ms Yuyun Yang acknowledges a scholarship of the Chinese Scholarship Council.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. Francis or A. R. Boccaccini.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Francis, A., Yang, Y., Virtanen, S. et al. Iron and iron-based alloys for temporary cardiovascular applications. J Mater Sci: Mater Med 26, 138 (2015). https://doi.org/10.1007/s10856-015-5473-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10856-015-5473-8

Keywords

Navigation