Skip to main content
Log in

Experimental testing of total knee replacements with UHMW-PE inserts: impact of severe wear test conditions

  • Clinical Applications of Biomaterials
  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Aseptic implant loosening due to inflammatory reactions to wear debris is the main reason for the revision of total knee replacements (TKR). Hence, the decrease in polyethylene wear particle generation from the articulating surfaces is aimed at improving implant design and material. For preclinical testing of new TKR systems standardized wear tests are required. However, these wear tests do not reproduce the entire in vivo situation, since the pattern and amount of wear and subsequent implant failure are underestimated. Therefore, daily activity, kinematics, implant aging and position, third-body-wear and surface properties have to be considered to estimate the wear of implant components in vivo. Hence, severe test conditions are in demand for a better reproduction of the in vivo situation of TKR. In the present article an overview of different experimental wear test scenarios considering clinically relevant polyethylene wear situations using severe test conditions is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. McKellop HA, D’Lima DD. How have wear testing and joint simulator studies helped to discriminate among materials and designs? J Am Acad Orthop Surg. 2008;16(Suppl 1):S111–9.

    Google Scholar 

  2. ISO 14243-1:2009, implants for surgery—wear of total knee-joint prostheses—Part 1: loading and displacement parameters for wear-testing machines with load control and corresponding environmental conditions for test. 2009.

  3. ISO 14243-3:2004, implants for surgery—wear of total knee-joint prostheses—Part 3: loading and displacement parameters for wear-testing machines with displacement control and corresponding environmental conditions for test. 2004.

  4. Harman MK, DesJardins J, Benson L, Banks SA, LaBerge M, Hodge WA. Comparison of polyethylene tibial insert damage from in vivo function and in vitro wear simulation. J Orthop Res. 2009;27(4):540–8.

    Article  Google Scholar 

  5. Rawlinson JJ, Furman BD, Li S, Wright TM, Bartel DL. Retrieval, experimental, and computational assessment of the performance of total knee replacements. J Orthop Res. 2006;24(7):1384–94.

    Article  Google Scholar 

  6. Harman M, Affatato S, Spinelli M, Zavalloni M, Stea S, Toni A. Polyethylene insert damage in unicondylar knee replacement: a comparison of in vivo function and in vitro simulation. Proc Inst Mech Eng H. 2010;224(7):823–30.

    Article  Google Scholar 

  7. Schroer WC, Berend KR, Lombardi AV, Barnes CL, Bolognesi MP, Berend ME, Ritter MA, Nunley RM. Why are total knees failing today? Etiology of total knee revision in 2010 and 2011. J Arthroplasty. 2013;28(8 Suppl):116–9.

    Article  Google Scholar 

  8. Dalury DF, Pomeroy DL, Gorab RS, Adams MJ. Why are total knee arthroplasties being revised? J Arthroplasty. 2013;28(8 Suppl):120–1.

    Article  Google Scholar 

  9. Pang HN, Jamieson P, Teeter MG, McCalden RW, Naudie DD, MacDonald SJ. Retrieval analysis of posterior stabilized polyethylene tibial inserts and its clinical relevance. J Arthroplasty. 2014;29(2):365–8.

    Article  Google Scholar 

  10. Manson TT, Kelly NH, Lipman JD, Wright TM, Westrich GH. Unicondylar knee retrieval analysis. J Arthroplasty. 2010;25(6 Suppl):108–11.

    Article  Google Scholar 

  11. Oonishi H, Ueno M, Kim SC, Oonishi H, Iwamoto M, Kyomoto M. Ceramic versus cobalt-chrome femoral components; wear of polyethylene insert in total knee prosthesis. J Arthroplasty. 2009;24(3):374–82.

    Article  Google Scholar 

  12. Collier JP, Sperling DK, Currier JH, Sutula LC, Saum KA, Mayor MB. Impact of gamma sterilization on clinical performance of polyethylene in the knee. J Arthroplasty. 1996;11(4):377–89.

    Article  Google Scholar 

  13. Muratoglu OK, Bragdon CR, Jasty M, O’Connor DO, Von Knoch RS, Harris WH. Knee-simulator testing of conventional and cross-linked polyethylene tibial inserts. J Arthroplasty. 2004;19(7):887–97.

    Article  Google Scholar 

  14. Medel FJ, Kurtz SM, Parvizi J, Klein GR, Kraay MJ, Rimnac CM. In vivo oxidation contributes to delamination but not pitting in polyethylene components for total knee arthroplasty. J Arthroplasty. 2011;26(5):802–10.

    Article  Google Scholar 

  15. Haider H, Weisenburger JN, Kurtz SM, Rimnac CM, Freedman J, Schroeder DW, Garvin KL. Does vitamin E-stabilized ultrahigh-molecular-weight polyethylene address concerns of cross-linked polyethylene in total knee arthroplasty? J Arthroplasty. 2012;27(3):461–9.

    Article  Google Scholar 

  16. Micheli BR, Wannomae KK, Lozynsky AJ, Christensen SD, Muratoglu OK. Knee simulator wear of vitamin E stabilized irradiated ultrahigh molecular weight polyethylene. J Arthroplasty. 2012;27(1):95–104.

    Article  Google Scholar 

  17. Hermida JC, Fischler A, Colwell CW, D’Lima DD. The effect of oxidative aging on the wear performance of highly crosslinked polyethylene knee inserts under conditions of severe malalignment. J Orthop Res. 2008;26(12):1585–90.

    Article  Google Scholar 

  18. Medel FJ, Rimnac CM, Kurtz SM. On the assessment of oxidative and microstructural changes after in vivo degradation of historical UHMWPE knee components by means of vibrational spectroscopies and nanoindentation. J Biomed Mater Res A. 2009;89(2):530–8.

    Article  Google Scholar 

  19. ASTM Standard F2003-02. Standard practice for accelerated aging of ultra-high molecular weight polyethylene after gamma irradiation in air. 2008.

  20. Edidin AA, Jewett CW, Kalinowski A, Kwarteng K, Kurtz SM. Degradation of mechanical behavior in UHMWPE after natural and accelerated aging. Biomaterials. 2000;21(14):1451–60.

    Article  Google Scholar 

  21. Kurtz SM, Muratoglu OK, Buchanan F, Currier B, Gsell R, Greer K, Gualtieri G, Johnson R, Schaffner S, Sevo K, Spiegelberg S, Shen FW, Yau SS. Interlaboratory reproducibility of standard accelerated aging methods for oxidation of UHMWPE. Biomaterials. 2001;22(13):1731–7.

    Article  Google Scholar 

  22. Stoller AP, Johnson TS, Popoola OO, Humphrey SM, Blanchard CR. Highly crosslinked polyethylene in posterior-stabilized total knee arthroplasty: in vitro performance evaluation of wear, delamination, and tibial post durability. J Arthroplasty. 2011;26(3):483–91.

    Article  Google Scholar 

  23. Walker PS, Blunn GW, Perry JP, Bell CJ, Sathasivam S, Andriacchi TP, Paul JP, Haider H, Campbell PA. Methodology for long-term wear testing of total knee replacements. Clin Orthop Relat Res. 2000;372:290–301.

    Article  Google Scholar 

  24. Kester MA, Herrera L, Wang A, Essner A. Knee bearing technology: where is technology taking us? J Arthroplasty. 2007;22(7 Suppl 3):16–20.

    Article  Google Scholar 

  25. Uvehammer J, Kärrholm J, Brandsson S. In vivo kinematics of total knee arthroplasty. Concave versus posterior-stabilised tibial joint surface. J Bone Joint Surg Br. 2000;82(4):499–505.

    Article  Google Scholar 

  26. Schmidt R, Komistek RD, Blaha JD, Penenberg BL, Maloney WJ. Fluoroscopic analyses of cruciate-retaining and medial pivot knee implants. Clin Orthop Relat Res. 2003;410:139–47.

    Article  Google Scholar 

  27. Morlock M, Schneider E, Bluhm A, Vollmer M, Bergmann G, Muller V, Honl M. Duration and frequency of every day activities in total hip patients. J Biomech. 2001;34(7):873–81.

    Article  Google Scholar 

  28. Shoemaker SC, Markolf KL. Effects of joint load on the stiffness and laxity of ligament-deficient knees. An in vitro study of the anterior cruciate and medial collateral ligaments. J Bone Joint Surg Am. 1985;67(1):136–46.

    Google Scholar 

  29. Fukubayashi T, Torzilli PA, Sherman MF, Warren RF. An in vitro biomechanical evaluation of anterior-posterior motion of the knee. Tibial displacement, rotation, and torque. J Bone Joint Surg Am. 1982;64(2):258–64.

    Google Scholar 

  30. Markolf KL, Kochan A, Amstutz HC. Measurement of knee stiffness and laxity in patients with documented absence of the anterior cruciate ligament. J Bone Joint Surg Am. 1984;66(2):242–52.

    Google Scholar 

  31. Kanamori A, Zeminski J, Rudy TW, Li G, Fu FH, Woo SL. The effect of axial tibial torque on the function of the anterior cruciate ligament: a biomechanical study of a simulated pivot shift test. Arthroscopy. 2002;18(4):394–8.

    Article  Google Scholar 

  32. Butler DL, Noyes FR, Grood ES. Ligamentous restraints to anterior-posterior drawer in the human knee. A biomechanical study. J Bone Joint Surg Am. 1980;62(2):259–70.

    Google Scholar 

  33. Woo SL, Kanamori A, Zeminski J, Yagi M, Papageorgiou C, Fu FH. The effectiveness of reconstruction of the anterior cruciate ligament with hamstrings and patellar tendon. A cadaveric study comparing anterior tibial and rotational loads. J Bone Joint Surg Am. 2002;84(6):907–14.

    Google Scholar 

  34. Briard JL, Witoolkollachit P, Lin G. Weichteilmanagement in der Knieendoprothetik. Orthopade. 2007;36:635–42.

    Article  Google Scholar 

  35. Bell CJ, Haider H, Blunn GW. Wear of fixed versus mobile bearing knees under normal and enhanced walking cycles. In: Transactions of the sixth World Biomaterials Congress (6), 6th World Biomaterials Congress, Kamuela (Big Island), Hawaii, USA, 2000:873.

  36. Haider H, Alberts LR, Johnson TS, Yao JQ. Comparison between force-controlled and displacement-controlled in -vitro wear testing on a widely used TKR implant. In: Transactions of the Orthopaedic Research Society (48), 48 th Annual Meeting of the Orthopaedic Research Society, Dallas, TX, USA, 2002: Poster No. 1007.

  37. Ngai V, Schwenke T, Wimmer MA. In-vivo kinematics of knee prostheses patients during level walking compared with the ISO force-controlled simulator standard. Proc Inst Mech Eng H. 2009;223(7):889–96.

    Article  Google Scholar 

  38. Schwiesau J, Schilling C, Kaddick C, Utzschneider S, Jansson V, Fritz B, Blomer W, Grupp TM. Definition and evaluation of testing scenarios for knee wear simulation under conditions of highly demanding daily activities. Med Eng Phys. 2013;35(5):591–600.

    Article  Google Scholar 

  39. Bergmann G, Bender A, Graichen F, Dymke J, Rohlmann A, Trepczynski A, Heller MO. Kutzner I1. Standardized loads acting in knee implants. PLoS One. 2014;9(1):e86035.

    Article  Google Scholar 

  40. Wang A, Sun DC, Yau SS, Edwards B, Sokol M, Essner A, Polineni VK, Stark C, Dumbleton JH. Orientation softening in the deformation and wear of ultra-high molecular weight polyethylene. Wear. 1997;203–204:230–41.

    Article  Google Scholar 

  41. Kang L, Galvin AL, Brown TD, Jin Z, Fisher J. Quantification of the effect of cross-shear on the wear of conventional and highly cross-linked UHMWPE. J Biomech. 2008;41(2):340–6.

    Article  Google Scholar 

  42. Schwenke T, Wimmer MA. Cross-shear in metal-on-polyethylene articulation of orthopaedic implants and its relationship to wear. Wear. 2013;301(1–2):168–74.

    Article  Google Scholar 

  43. Barnett PI, Fisher J, Auger DD, Stone MH, Ingham E. Comparison of wear in a total knee replacement under different kinematic conditions. J Mater Sci Mater Med. 2001;12(10–12):1039–42.

    Article  Google Scholar 

  44. Knight LA, McEwen HM, Farrar R, Stone MH, Fisher J, Taylor M. The influence of the wear path on the rates on total knee replacement. Summer Bioengineering Conference, Key Biscayne, FL, USA, 2003:1179–80.

  45. McEwen HM, Barnett PI, Bell CJ, Farrar R, Auger DD, Stone MH, Fisher J. The influence of design, materials and kinematics on the in vitro wear of total knee replacements. J Biomech. 2005;38(2):357–65.

    Article  Google Scholar 

  46. Benson LC, DesJardins JD, Harman MK, LaBerge M. Effect of stair descent loading on ultra-high molecular weight polyethylene wear in a force-controlled knee simulator. Proc Inst Mech Eng H. 2002;216(6):409–18.

    Article  Google Scholar 

  47. Cottrell JM, Babalola O, Furman BS, Wright TM. Stair ascent kinematics affect UHMWPE wear and damage in total knee replacements. J Biomed Mater Res B Appl Biomater. 2006;78(1):15–9.

    Article  Google Scholar 

  48. Schaerer C, Mimnaugh K, Popoola OO, Seebeck J. Wear of UHMWPE tibial inserts under simulated obsese patient conditions. In: Transactions of the Orthopaedic Research Society (56), 56th Annual Meeting of the Orthopaedic Research Society, New Orleans, LA, USA, 2010: Poster No. 2329.

  49. Essner A, Herrera L, Hughes P, Kester M. The influence of material and design on total knee replacement wear. J Knee Surg. 2011;24(1):9–17.

    Article  Google Scholar 

  50. Johnson TS, Yao JQ, Laurent MP, Blanchard CR, Crowninshield RD. Implementation of multiple activities of daily living for knee wear testing. In: Transactions of the Seventh World Biomaterials Congress (7), Sydney, Australia, 2004:83.

  51. Popoola OO, Yao JQ, Johnson TS, Blanchard CR. Wear, delamination, and fatigue resistance of melt-annealed highly crosslinked UHMWPE cruciate-retaining knee inserts under activities of daily living. J Orthop Res. 2010;28(9):1120–6.

    Article  Google Scholar 

  52. Orozco DA, Wimmer MA. The impact of daily physical activities on TKR wear. Biomaterialien. 2010;11(S1):107.

    Google Scholar 

  53. Franta L, Kronek J, Suchánek J. TKA wear testing input after kinematic and dynamic meta-analysis: technique and proof of concept. Wear. 2011;271(9–10):2687–92.

    Article  Google Scholar 

  54. Jennings LM, Bell CI, Ingham E, Komistek RD, Stone MH, Fisher J. The influence of femoral condylar lift-off on the wear of artificial knee joints. Proc Inst Mech Eng H. 2007;221(3):305–14.

    Article  Google Scholar 

  55. Burton A, Williams S, Brockett CL, Fisher J. In vitro comparison of fixed- and mobile meniscal-bearing unicondylar knee arthroplasties: effect of design, kinematics, and condylar liftoff. J Arthroplasty. 2012;27(8):1452–9.

    Article  Google Scholar 

  56. Bell CJ, Walker PS, Abeysundera MR, Simmons JM, King PM, Blunn GW. Effect of oxidation on delamination of ultrahigh-molecular-weight polyethylene tibial components. J Arthroplasty. 1998;13(3):280–90.

    Article  Google Scholar 

  57. Blunn GW, Walker PS, Joshi A, Hardinge K. The dominance of cyclic sliding in producing wear on total knee replacements. Clin Orthop Relat Res. 1991;273:253–60.

    Google Scholar 

  58. Deluzio KJ, Connor DO, Bragdon CR, Muratoglu OK, Flynn H, Rubash H, Jasty M, Wyss UP, Harris WH. Development of an in vitro knee delamination model in a knee simulator with physiologic load and motion. In: Transactions of the Orthopaedic Research Society (46), 46th Annual Meeting of the Orthopaedic Research Society, Orlando, FL, USA, 2000: Poster No. 0490.

  59. Muratoglu OK, Bragdon CR, Connor DO, Perinchief RS, Travers JT, Jasty M, Rubash H, Harris WH. Markedly improved adhesive wear and delamination resistance with a highly crosslinked UHMWPE for use in total knee arthroplasty. In: Transactions of the Orthopaedic Research Society (47), 47th Annual Meeting of the Orthopaedic Research Society, San Fransisco, CA, USA, 2001: Poster No. 1009.

  60. Schwiesau J, Schilling C, Utzschneider S, Jansson V, Fritz B, Blomer W, Grupp TM. Knee wear simulation under conditions of highly demanding daily activities–influence on an unicompartmental fixed bearing knee design. Med Eng Phys. 2013;35(8):1204–11.

    Article  Google Scholar 

  61. Walker PS, Haider H. Characterizing the motion of total knee replacements in laboratory tests. Clin Orthop Relat Res. 2003;410:54–68.

    Article  Google Scholar 

  62. Walker PS, Blunn GW, Broome DR, Perry J, Watkins A, Sathasivam S, Dewar ME, Paul JP. A knee simulating machine for performance evaluation of total knee replacements. J Biomech. 1997;30(1):83–9.

    Article  Google Scholar 

  63. DesJardins JD, Walker PS, Haider H, Perry J. The use of a force-controlled dynamic knee simulator to quantify the mechanical performance of total knee replacement designs during functional activity. J Biomech. 2000;33(10):1231–42.

    Article  Google Scholar 

  64. Haider H, Walker PS. Measurements of constraint of total knee replacement. J Biomech. 2005;38(2):341–8.

    Article  Google Scholar 

  65. Ezzet KA, Hermida JC, Colwell CW, D’Lima DD. Oxidized zirconium femoral components reduce polyethylene wear in a knee wear simulator. Clin Orthop Relat Res. 2004;428:120–4.

    Article  Google Scholar 

  66. Johnson TS, Laurent MP, Yao JQ, Blanchard CR. Comparison of wear of mobile and fixed bearing knees tested in a knee simulator. Wear. 2003;255(7–12):1107–12.

    Article  Google Scholar 

  67. Mueller-Rath R, Kleffner B, Andereya S, Mumme T, Wirtz DC. Measures for reducing ultra-high-molecular-weight polyethylene wear in total knee replacement: a simulator study. Biomed Tech (Berl). 2007;52(4):295–300.

    Article  Google Scholar 

  68. Nassutt R, Wimmer MA, Schneider E, Morlock M. The influence of resting periods on friction in the artificial hip. Clin Orthop Relat Res. 2003;407:127–38.

    Article  Google Scholar 

  69. Kretzer JP, Jakubowitz E, Hofmann K, Heisel C, Lietz E. Influence of resting periods on polyethylene wear in a knee simulator study. Med Sci Monit. 2009;15(11):MT143–6.

    Google Scholar 

  70. Shorez JP, Harding TS, Atkinson PJ, Walter N. Alteration of the amount and morphology of wear particles by the addition of loading profile transitions during artificial hip wear testing. Proc Inst Mech Eng H. 2008;222:865–75.

    Article  Google Scholar 

  71. Reinders J, Sonntag R, Kretzer JP. How do gait frequency and serum-replacement interval affect polyethylene wear in knee-wear simulator tests? J Mater Sci Mater Med. 2014;25(11):2463–9.

    Article  Google Scholar 

  72. Grupp TM, Saleh KJ, Mihalko WM, Hintner M, Fritz B, Schilling C, Schwiesau J, Kaddick C. Effect of anterior-posterior and internal-external motion restraint during knee wear simulation on a posterior stabilised knee design. J Biomech. 2013;46(3):491–7.

    Article  Google Scholar 

  73. Grupp TM, Schroeder C, Kyun KT, Miehlke RK, Fritz B, Jansson V, Utzschneider S. Biotribology of a mobile bearing posterior stabilised knee design—effect of motion restraint on wear, tibio-femoral kinematics and particles. J Biomech. 2014;47(10):2415–23.

    Article  Google Scholar 

  74. Kretzer JP, Jakubowitz E, Sonntag R, Hofmann K, Heisel C, Thomsen M. Effect of joint laxity on polyethylene wear in total knee replacement. J Biomech. 2010;43(6):1092–6.

    Article  Google Scholar 

  75. Reinders J, Sonntag R, Kretzer JP. Wear behavior of an unstable knee: stabilization via implant design? Biomed Res Int. 2014;2014:7.

    Article  Google Scholar 

  76. Chua KH, Chen Y, Lingaraj K. Navigated total knee arthroplasty: is it error-free? Knee Surg Sports Traumatol Arthrosc. 2014;22(3):643–9.

    Article  Google Scholar 

  77. Perlick L, Luring C, Tingart M, Grifka J, Bathis H. Revision prosthetic of the knee joint. The influence of a navigation system on the alignment and reconstruction of the joint line. Orthopade. 2006;35(10):10806.

    Article  Google Scholar 

  78. Fang DM, Ritter MA, Davis KE. Coronal alignment in total knee arthroplasty: just how important is it? J Arthroplasty. 2009;24(6 Suppl):39–43.

    Article  Google Scholar 

  79. Kim YH, Park JW, Kim JS, Park SD. The relationship between the survival of total knee arthroplasty and postoperative coronal, sagittal and rotational alignment of knee prosthesis. Int Orthop. 2014;38(2):379–85.

    Article  Google Scholar 

  80. Ritter MA, Faris PM, Keating EM, Meding JB. Postoperative alignment of total knee replacement. Its effect on survival. Clin Orthop Relat Res. 1994;299:153–6.

    Google Scholar 

  81. Srivastava A, Lee GY, Steklov N, Colwell CW, Ezzet KA, D’Lima DD. Effect of tibial component varus on wear in total knee arthroplasty. Knee. 2012;19(5):560–3.

    Article  Google Scholar 

  82. Werner FW, Ayers DC, Maletsky LP, Rullkoetter PJ. The effect of valgus/varus malalignment on load distribution in total knee replacements. J Biomech. 2005;38(2):349–55.

    Article  Google Scholar 

  83. Cheng CK, Huang CH, Liau JJ, Huang CH. The influence of surgical malalignment on the contact pressures of fixed and mobile bearing knee prostheses–a biomechanical study. Clin Biomech (Bristol, Avon). 2003;18(3):231–6.

    Article  Google Scholar 

  84. Liau JJ, Cheng CK, Huang CH, Lo WH. The effect of malalignment on stresses in polyethylene component of total knee prostheses–a finite element analysis. Clin Biomech (Bristol, Avon). 2002;17(2):140–6.

    Article  Google Scholar 

  85. Schubert R, Zietz C, Bergschmidt P, Fabry C, Bader R. Wear simulator study of malaligned TiN-coated vs. uncoated metallic femoral components of a bicondylar knee endoprosthesis. 15th EFORT Congress, London, UK, 2014: EFORT14-1388.

  86. D’Lima DD, Hermida JC, Chen PC, Colwell CW. Polyethylene wear and variations in knee kinematics. Clin Orthop Relat Res. 2001;392:124–30.

    Article  Google Scholar 

  87. Weber P, Schröder C, Utzschneider S, Schmidutz F, Jansson V, Müller PE. Does increased tibial slope reduce the wear rate of unicompartmental knee prostheses? An in vitro investigation. Orthopade. 2012;41(4):298–302.

    Article  Google Scholar 

  88. Davidson JA, Poggie RA, Mishra AK. Abrasive wear of ceramic, metal, and UHMWPE bearing surfaces from third-body bone, PMMA bone cement, and titanium debris. Biomed Mater Eng. 1994;4(3):213–29.

    Google Scholar 

  89. Wang A, Schmidig G. Ceramic femoral heads prevent runaway wear for highly crosslinked polyethylene acetabular cups by third-body bone cement particles. Wear. 2003;255(7–12):1057–63.

    Article  Google Scholar 

  90. Jones VC, Williams IR, Auger DD, Walsh W, Barton DC, Stone MH, Fisher J. Quantification of third body damage to the tibial counterface in mobile bearing knees. Proc Inst Mech Eng H. 2001;215(2):171–9.

    Article  Google Scholar 

  91. Morscher EW, Hefti A, Aebi U. Severe osteolysis after third-body wear due to hydroxyapatite particles from acetabular cup coating. J Bone Joint Surg Br. 1998;80(2):267–72.

    Article  Google Scholar 

  92. Minakawa H, Stone MH, Wroblewski BM, Lancaster JG, Ingham E, Fisher J. Quantification of third-body damage and its effect on UHMWPE wear with different types of femoral head. J Bone Joint Surg Br. 1998;80(5):894–9.

    Article  Google Scholar 

  93. DeBaets T, Waelput W, Bellemans J. Analysis of third body particles generated during total knee arthroplasty: is metal debris an issue? Knee. 2008;15:95–7.

    Article  Google Scholar 

  94. Niki Y, Matsumoto H, Otani T, Tomatsu T, Toyama Y. How much sterile saline should be used for efficient lavage during total knee arthroplasty? Effects of pulse lavage irrigation on removal of bone and cement debris. J Arthroplasty. 2007;22:95–9.

    Article  Google Scholar 

  95. Gotterson PR, Nusem I, Pearcy MJ, Crawford RW. Metal debris from bony resection in knee arthroplasty–is it an issue? Acta Orthop. 2005;76(4):475–80.

    Article  Google Scholar 

  96. Hauptmann SM, Weber P, Glaser C, Birkenmaier C, Jansson V, Muller PE. Free bone cement fragments after minimally invasive unicompartmental knee arthroplasty: an underappreciated problem. Knee Surg Sports Traumatol Arthrosc. 2008;16(8):770–5.

    Article  Google Scholar 

  97. Muratoglu OK, Burroughs BR, Bragdon CR, Christensen S, Lozynsky A, Harris WH. Knee simulator wear of polyethylene tibias articulating against explanted rough femoral components. Clin Orthop Relat Res. 2004;428:108–13.

    Article  Google Scholar 

  98. Zietz C, Bergschmidt P, Lange R, Mittelmeier W, Bader R. Third-body abrasive wear of tibial polyethylene inserts combined with metallic and ceramic femoral components in a knee simulator study. Int J Artif Organs. 2013;36(1):47–55.

    Article  Google Scholar 

  99. Schroeder C, Grupp TM, Fritz B, Schilling C, Chevalier Y, Utzschneider S, Jansson V. The influence of third-body particles on wear rate in unicondylar knee arthroplasty: a wear simulator study with bone and cement debris. J Mater Sci Mater Med. 2013;24(5):1319–25.

    Article  Google Scholar 

Download references

Acknowledgments

We kindly thank Mrs. Regina Lange from the Institute of Electronic Appliances and Circuits, University of Rostock for preparation of the FESEM image (Fig. 10).

Conflict of interest

The authors declare that there is no conflict of interests regarding the publication of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carmen Zietz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zietz, C., Reinders, J., Schwiesau, J. et al. Experimental testing of total knee replacements with UHMW-PE inserts: impact of severe wear test conditions. J Mater Sci: Mater Med 26, 134 (2015). https://doi.org/10.1007/s10856-015-5470-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10856-015-5470-y

Keywords

Navigation