Skip to main content

Advertisement

Log in

Investigation of the antimicrobial activity and biocompatibility of magnesium alloy coated with HA and antimicrobial peptide

  • Engineering and Nano-engineering Approaches for Medical Devices
  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Implant-associated infection is one of the biggest problems in orthopedic surgery. Antimicrobial peptides (AMPs) are well-known components of the innate immunity and less susceptible to the development of pathogen resistance compared to conventional antibiotics. Magnesium alloys as potential biodegradable bone implants have been received much attention in biomaterials field. This study investigated the deposition of calcium phosphate (CaP) coatings and loading of AMPs on the magnesium alloy surface by a biomimetic method. Scanning electron microscope (SEM) results presented that a microporous and plate-like CaP coating was processed on the magnesium alloy surface. X-ray diffractometry (XRD) and Fourier transform infrared spectroscopy (FTIR) analysis showed the main component of coating was hydroxyapatite (HA). Degradation assay in vitro showed that the HA coating deposited onto the magnesium alloy was corroded more slowly than the bare one. The amount of AMP loaded in the HA coating was 11.16 ± 1.99 μg/cm2. The AMP loaded onto HA coatings had slow release for 7 days. The AMP-loaded coating showed antimicrobial activity against Staphylococcus aureus. Its bacterial inhibition rate exceeded 50 % after 4 days and the antibacterial effect was sustained for 7 days. The coated magnesium alloys loaded with AMP could improve rat bone marrow mesenchymal stem cells (rBMMSCs) proliferation. Furthermore, it could also promote alkaline phosphatase (ALP) activity of rBMMSCs. Both radiographic evaluation and histopathology analysis demonstrated that implantation of the coated magnesium alloy into the rabbit femoral condyle had promoted bone repair and showed anti-inflammatory effect. The results showed that the AMP loaded onto HA coatings on the magnesium alloy surface could be considered an ideal orthopedic implant against S. aureus infection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Yun Y, Dong Z, Lee N, Liu Y, Xue D, Guo X, et al. Revolutionizing biodegradable metals. Mater Today. 2009;12(10):22–32.

    Article  Google Scholar 

  2. Hermawan H. Biodegradable metals: state of the art. Biodegradable metals. Berlin: Springer; 2012. p. 13–22.

    Google Scholar 

  3. Zheng Y, Gu X, Witte F. Biodegradable metals. Mater Sci Eng. 2014;77:1–34.

    Article  Google Scholar 

  4. Staiger MP, Pietak AM, Huadmai J, Dias G. Magnesium and its alloys as orthopedic biomaterials: a review. Biomaterials. 2006;27(9):1728–34.

    Article  Google Scholar 

  5. Gu X, Zheng Y, Cheng Y, Zhong S, Xi T. In vitro corrosion and biocompatibility of binary magnesium alloys. Biomaterials. 2009;30(4):484–98.

    Article  Google Scholar 

  6. Li Z, Gu X, Lou S, Zheng Y. The development of binary Mg–Ca alloys for use as biodegradable materials within bone. Biomaterials. 2008;29(10):1329–44.

    Article  Google Scholar 

  7. Gu X, Zheng Y, Zhong S, Xi T, Wang J, Wang W. Corrosion of and cellular responses to Mg–Zn–Ca bulk metallic glasses. Biomaterials. 2010;31(6):1093–103.

    Article  Google Scholar 

  8. Witte F, Kaese V, Haferkamp H, Switzer E, Meyer-Lindenberg A, Wirth CJ, et al. In vivo corrosion of four magnesium alloys and the associated bone response. Biomaterials. 2005;26(17):3557–63.

    Article  Google Scholar 

  9. Witte F, Fischer J, Nellesen J, Crostack H-A, Kaese V, Pisch A, et al. In vitro and in vivo corrosion measurements of magnesium alloys. Biomaterials. 2006;27(7):1013–8.

    Article  Google Scholar 

  10. Xu L, Yu G, Zhang E, Pan F, Yang K. In vivo corrosion behavior of Mg–Mn–Zn alloy for bone implant application. J Biomed Mater Res, Part A. 2007;83(3):703–11.

    Article  Google Scholar 

  11. Kannan MB. Enhancing the performance of calcium phosphate coating on a magnesium alloy for bioimplant applications. Mater Lett. 2012;76:109–12.

    Article  Google Scholar 

  12. Tanahashi M, Yao T, Kokubo T, Minoda M, Miyamoto T, Nakamura T, et al. Apatite coating on organic polymers by a biomimetic process. J Am Ceram Soc. 1994;77(11):2805–8.

    Article  Google Scholar 

  13. Wang H, Guan S, Wang Y, Liu H, Wang H, Wang L, et al. In vivo degradation behavior of Ca-deficient hydroxyapatite coated Mg–Zn–Ca alloy for bone implant application. Coll Surf B. 2011;88(1):254–9.

    Article  Google Scholar 

  14. Coelho PG, de Assis SL, Costa I, Thompson VP. Corrosion resistance evaluation of a Ca-and P-based bioceramic thin coating in Ti-6Al-4V. J Mater Sci. 2009;20(1):215–22.

    Google Scholar 

  15. Sridhar T, Kamachi Mudali U, Subbaiyan M. Preparation and characterisation of electrophoretically deposited hydroxyapatite coatings on type 316 L stainless steel. Corros Sci. 2003;45(2):237–52.

    Article  Google Scholar 

  16. Shadanbaz S, Dias GJ. Calcium phosphate coatings on magnesium alloys for biomedical applications: a review. Acta Biomater. 2012;8(1):20–30.

    Article  Google Scholar 

  17. Murugan R, Ramakrishna S. Bioresorbable composite bone paste using polysaccharide based nano hydroxyapatite. Biomaterials. 2004;25(17):3829–35.

    Article  Google Scholar 

  18. Kong L, Gao Y, Lu G, Gong Y, Zhao N, Zhang X. A study on the bioactivity of chitosan/nano-hydroxyapatite composite scaffolds for bone tissue engineering. Eur Polym J. 2006;42(12):3171–9.

    Article  Google Scholar 

  19. Xu L, Pan F, Yu G, Yang L, Zhang E, Yang K. In vitro and in vivo evaluation of the surface bioactivity of a calcium phosphate coated magnesium alloy. Biomaterials. 2009;30(8):1512–23.

    Article  Google Scholar 

  20. Hu J, Wang C, Ren WC, Zhang S, Liu F. Microstructure evolution and corrosion mechanism of dicalcium phosphate dihydrate coating on magnesium alloy in simulated body fluid. Mater Chem Phys. 2010;119(1–2):294–8.

    Article  Google Scholar 

  21. Liu GY, Hu J, Ding ZK, Wang C. Bioactive calcium phosphate coating formed on micro-arc oxidized magnesium by chemical deposition. Appl Surf Sci. 2011;257(6):2051–7.

    Article  Google Scholar 

  22. Onaizi SA, Leong SSJ. Tethering antimicrobial peptides: current status and potential challenges. Biotechnol Adv. 2011;29(1):67–74.

    Article  Google Scholar 

  23. Kazemzadeh-Narbat M, Lai BFL, Ding C, Kizhakkedathu JN, Hancock REW, Wang R. Multilayered coating on titanium for controlled release of antimicrobial peptides for the prevention of implant-associated infections. Biomaterials. 2013;34(24):5969–77.

    Article  Google Scholar 

  24. Kazemzadeh-Narbat M, Kindrachuk J, Duan K, Jenssen H, Hancock REW, Wang R. Antimicrobial peptides on calcium phosphate-coated titanium for the prevention of implant-associated infections. Biomaterials. 2010;31(36):9519–26.

    Article  Google Scholar 

  25. Zhao L, Chu PK, Zhang Y, Wu Z. Antibacterial coatings on titanium implants. J Biomed Mater Res, Part B. 2009;91(1):470–80.

    Article  Google Scholar 

  26. Moskowitz JS, Blaisse MR, Samuel RE, Hsu H-P, Harris MB, Martin SD, et al. The effectiveness of the controlled release of gentamicin from polyelectrolyte multilayers in the treatment of Staphylococcus aureus infection in a rabbit bone model. Biomaterials. 2010;31(23):6019–30.

    Article  Google Scholar 

  27. Norowski PA, Bumgardner JD. Biomaterial and antibiotic strategies for peri-implantitis: a review. J Biomed Mater Res, Part B. 2009;88B(2):530–43.

    Article  Google Scholar 

  28. Saadatian-Elahi M, Teyssou R, Vanhems P. Staphylococcus aureus, the major pathogen in orthopaedic and cardiac surgical site infections: a literature review. Int J Surg. 2008;6(3):238–45.

    Article  Google Scholar 

  29. Edmond MB. Controlling methicillin-resistant Staphylococcus aureus: an effective alternative approach. Clin Microbiol Newsl. 2008;30(16):121–4.

    Article  Google Scholar 

  30. Shukla A, Fleming KE, Chuang HF, Chau TM, Loose CR, Stephanopoulos GN, et al. Controlling the release of peptide antimicrobial agents from surfaces. Biomaterials. 2010;31(8):2348–57.

    Article  Google Scholar 

  31. Hancock R, Patrzykat A. Clinical development of cationic antimicrobial peptides: from natural to novel antibiotics. Curr Drug Targets Infect Disord. 2002;2(1):79–83.

    Article  Google Scholar 

  32. Spellberg B, Guidos R, Gilbert D, Bradley J, Boucher HW, Scheld WM, et al. The epidemic of antibiotic-resistant infections: a call to action for the medical community from the infectious diseases society of America. Clin Infect Dis. 2008;46(2):155–64.

    Article  Google Scholar 

  33. Theuretzbacher U. Future antibiotics scenarios: is the tide starting to turn? Int J Antimicrob Agents. 2009;34(1):15–20.

    Article  Google Scholar 

  34. Brogden NK, Brogden KA. Will new generations of modified antimicrobial peptides improve their potential as pharmaceuticals? Int J Antimicrob Agents. 2011;38(3):217–25.

    Google Scholar 

  35. Yang S-T, Shin SY, Hahm K-S, Kim JI. Design of perfectly symmetric Trp-rich peptides with potent and broad-spectrum antimicrobial activities. Int J Antimicrob Agents. 2006;27(4):325–30.

    Article  Google Scholar 

  36. Lawyer C, Pai S, Watabe M, Borgia P, Mashimo T, Eagleton L, et al. Antimicrobial activity of a 13 amino acid tryptophan-rich peptide derived from a putative porcine precursor protein of a novel family of antibacterial peptides. FEBS Lett. 1996;390(1):95–8.

    Article  Google Scholar 

  37. Barry AL, Craig WA, Nadler H, Reller LB, Sanders CC, Swenson JM. Methods for determining bactericidal activity of antimicrobial agents: approved guideline. Wayne: National Committee for Clinical Laboratory Standards; 1999.

    Google Scholar 

  38. Liu T-Y, Chen S-Y, Liu D-M, Liou S-C. On the study of BSA-loaded calcium-deficient hydroxyapatite nano-carriers for controlled drug delivery. J Control Release. 2005;107(1):112–21.

    Article  Google Scholar 

  39. Lee M, Li W, Siu RK, Whang J, Zhang X, Soo C, et al. Biomimetic apatite-coated alginate/chitosan microparticles as osteogenic protein carriers. Biomaterials. 2009;30(30):6094–101.

    Article  Google Scholar 

  40. Wang H, Lin C, Hu R. Effects of structure and composition of the CaP composite coatings on apatite formation and bioactivity in simulated body fluid. Appl Surf Sci. 2009;255(7):4074–81.

    Article  Google Scholar 

  41. Leonor I, Alves C, Azevedo HS, Reis R. Effects of protein incorporation on calcium phosphate coating. Mater Sci Eng. 2009;29(3):913–8.

    Article  Google Scholar 

  42. Liu Y, Hunziker E, Randall N, De Groot K, Layrolle P. Proteins incorporated into biomimetically prepared calcium phosphate coatings modulate their mechanical strength and dissolution rate. Biomaterials. 2003;24(1):65–70.

    Article  Google Scholar 

  43. Virtanen S. Biodegradable Mg and Mg alloys: corrosion and biocompatibility. Mater Sci Eng. 2011;176(20):1600–8.

    Article  Google Scholar 

  44. Alvarez-Lopez M, Pereda MD, del Valle JA, Fernandez-Lorenzo M, Garcia-Alonso MC, Ruano OA, et al. Corrosion behaviour of AZ31 magnesium alloy with different grain sizes in simulated biological fluids. Acta Biomater. 2010;6(5):1763–71.

    Article  Google Scholar 

  45. Roy A, Singh SS, Datta MK, Lee B, Ohodnicki J, Kumta PN. Novel sol–gel derived calcium phosphate coatings on Mg4Y alloy. Mater Sci Eng. 2011;176(20):1679–89.

    Article  Google Scholar 

  46. Brar HS, Platt MO, Sarntinoranont M, Martin PI, Manuel MV. Magnesium as a biodegradable and bioabsorbable material for medical implants. JOM. 2009;61(9):31–4.

    Article  Google Scholar 

  47. Kozerski S, Pawlowski L, Jaworski R, Roudet F, Petit F. Two zones microstructure of suspension plasma sprayed hydroxyapatite coatings. Surf Coat Technol. 2010;204(9–10):1380–7.

    Article  Google Scholar 

  48. Lu X, Zhao Z, Leng Y. Biomimetic calcium phosphate coatings on nitric-acid-treated titanium surfaces. Mater Sci Eng. 2007;27(4):700–8.

    Article  Google Scholar 

  49. Kim H-M. Ceramic bioactivity and related biomimetic strategy. Curr Opin Solid State Mater Sci. 2003;7(4):289–99.

    Article  Google Scholar 

  50. Liu Y, de Groot K, Hunziker EB. Biomimetic mineral coatings in dental and orthopaedic implantology. Front Mater Sci China. 2009;3(2):154–62.

    Article  Google Scholar 

  51. Duan K, Tang A, Wang R. A new evaporation-based method for the preparation of biomimetic calcium phosphate coatings on metals. Mater Sci Eng. 2009;29(4):1334–7.

    Article  Google Scholar 

  52. Grinnell F. Cellular adhesiveness and extracellular substrata. Int Rev Cytol. 1977;53:65–144.

    Article  Google Scholar 

  53. Zhang Y, Venugopal JR, El-Turki A, Ramakrishna S, Su B, Lim CT. Electrospun biomimetic nanocomposite nanofibers of hydroxyapatite/chitosan for bone tissue engineering. Biomaterials. 2008;29(32):4314–22.

    Article  Google Scholar 

  54. Chou H-T, Wen H-W, Kuo T-Y, Lin C-C, Chen W-J. Interaction of cationic antimicrobial peptides with phospholipid vesicles and their antibacterial activity. Peptides. 2010;31(10):1811–20.

    Article  Google Scholar 

  55. Zasloff M. Antimicrobial peptides of multicellular organisms. Nature. 2002;415(6870):389–95.

    Article  Google Scholar 

  56. Cordes FS, Bright JN, Sansom MSP. Proline-induced distortions of transmembrane helices. J Mol Biol. 2002;323(5):951–60.

    Article  Google Scholar 

  57. Rex S. A Pro → Ala substitution in melittin affects self-association, membrane binding and pore-formation kinetics due to changes in structural and electrostatic properties. Biophys Chem. 2000;85(2–3):209–28.

    Article  Google Scholar 

  58. Kazemzadeh-Narbat M, Noordin S, Masri BA, Garbuz DS, Duncan CP, Hancock RE, et al. Drug release and bone growth studies of antimicrobial peptide-loaded calcium phosphate coating on titanium. J Biomed Mater Res, Part B. 2012;100(5):1344–52.

    Article  Google Scholar 

Download references

Acknowledgments

This study was supported by National Science Foundation of China (No. 81171459, 31270021), Fundamental Research Funds for the Central Universities (No. 21613125, 21612317) and Program of Excellent “Pearl River” Young Scientists (2011).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Changren Zhou or Yanpeng Jiao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tian, J., Shen, S., Zhou, C. et al. Investigation of the antimicrobial activity and biocompatibility of magnesium alloy coated with HA and antimicrobial peptide. J Mater Sci: Mater Med 26, 66 (2015). https://doi.org/10.1007/s10856-015-5389-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10856-015-5389-3

Keywords

Navigation