Skip to main content
Log in

Enhanced anti-cancer activity by curcumin-loaded hydrogel nanoparticle derived aggregates on A549 lung adenocarcinoma cells

  • Delivery Systems
  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

To investigate the anti-cancer activity of curcumin-loaded hydrogel nanoparticle derived aggregates on A549 lung adenocarcinoma cells. Curcumin was incorporated with biopolymeric chitosan, gelatin, and hyaluronan nanoparticles using an electrostatic field system. Characteristics of curcumin-loaded aggregates were examined including size and morphology, incorporation efficiency, stability and in vitro release. Treatment effect on A549 cells were assessed with cell viability assay, apoptosis assay, cell cycle analysis, reactive oxygen species detection, and Western blot. Observation from transmission electron microscopy show that the prepared biopolymeric nanoparticles were approximately 3–4 nm in diameter and that the size of the aggregates increased to approximately 26–55 nm after the incorporation of curcumin with the nanoparticles. The incorporation efficiency of curcumin into the chitosan, gelatin, and hyaluronan nanoparticles was 81, 67, and 78 % respectively. The formation of hyaluronan/curcumin and gelatin/curcumin aggregates seems to improve the stability of curcumin drug. The chitosan/curcumin aggregate has a faster release of curcumin than gelatin/curcumin and hyaluronan/curcumin aggregates. Treatment with chitosan/curcumin, gelatin/curcumin and hyaluronan/curcumin aggregates resulted in higher apoptosis rates of 45, 40 and 32 %, respectively, as compared to pure curcumin (less than 20 %) via Annexin V-FITC/PI analysis. Chitosan/curcumin aggregates induce the highest apoptosis effect (indicated by sub-G1 phase). In summary, chitosan/curcumin, gelatin/curcumin, and hyaluronan/curcumin aggregates represent higher anticancer proliferation properties in A549 cells than curcumin alone that exhibit great potential enhancement by either using fewer drugs or a decreased duration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Manju S, Sreenivasan K. Conjugation of curcumin onto hyaluronic acid enhances its aqueous solubility and stability. J Colloid Interface Sci. 2011;359:318–25.

    Article  Google Scholar 

  2. Sa G, Das T. Anti cancer effects of curcumin: cycle of life and death. Cell Div. 2008;3:14. doi:10.1186/1747-1028-3-14.

    Article  Google Scholar 

  3. Datta R, Halder S, Zhang B. Role of TGF-β signaling in curcumin-mediated inhibition of tumorigenicity of human lung cancer cells. J Cancer Res Clin Oncol. 2013;139:563–72.

    Article  Google Scholar 

  4. Radhakrishna Pillai G, Srivastava AS, Hassanein TI, Chauhan DP, Carrier E. Induction of apoptosis in human lung cancer cells by curcumin. Cancer Lett. 2004;208:163–70.

    Article  Google Scholar 

  5. Kizhakkayil J, Thayyullathil F, Chathoth S, Hago A, Patel M, Galadari S. Modulation of curcumin-induced Akt phosphorylation and apoptosis by PI3K inhibitor in MCF-7 cells. Biochem Biophys Res Commun. 2010;394:476–81.

    Article  Google Scholar 

  6. Tang H, Murphy CJ, Zhang B, Shen Y, Van Kirk EA, Murdoch WJ, Radosz M. Curcumin polymers as anticancer conjugates. Biomaterials. 2010;31:7139–49.

    Article  Google Scholar 

  7. Sanoj Rejinold N, Muthunarayanan M, Divyarani VV, Sreerekha PR, Chennazhi KP, Nair SV, Tamura H, Jayakumar R. Curcumin-loaded biocompatible thermoresponsive polymeric nanoparticles for cancer drug delivery. J Colloid Interface Sci. 2011;360:39–51.

    Article  Google Scholar 

  8. Yallapu MM, Gupta BK, Jaggi M, Chauhan SC. Fabrication of curcumin encapsulated PLGA nanoparticles for improved therapeutic effects in metastatic cancer cells. J Colloid Interface Sci. 2010;351:19–29.

    Article  Google Scholar 

  9. Dhule SS, Penfornis P, Frazier T, Walker R, Feldman J, Tan G, He J, Alb A, John V, Pochampally R. Curcumin-loaded γ-cyclodextrin liposomal nanoparticles as delivery vehicles for osteosarcoma. Nanomed-Nanotechnol. 2012;8:440–51.

    Article  Google Scholar 

  10. Zhou N, Zan X, Wang Z, Wu H, Yin D, Liao C, Wan Y. Galactosylated chitosan–polycaprolactone nanoparticles for hepatocyte-targeted delivery of curcumin. Carbohydr Polym. 2013;94:420–9.

    Article  Google Scholar 

  11. Ahmed K, Li Y, McClements DJ, Xiao H. Nanoemulsion- and emulsion-based delivery systems for curcumin: encapsulation and release properties. Food Chem. 2012;132:799–807.

    Article  Google Scholar 

  12. Song L, Shen Y, Hou J, Lei L, Guo S, Qian C. Polymeric micelles for parenteral delivery of curcumin: preparation, characterization and in vitro evaluation. Colloids Surf A. 2011;390:25–32.

    Article  Google Scholar 

  13. Yu-Hsien K, Shwu-Jen C, Chin Wen C, Shyh-Ming K, Shu-Ying C, Ru-Ting L. Preparation of bio-polymeric nanoparticles by electrostatic field system. Micro Nano Lett. 2012;7:997–1000.

    Article  Google Scholar 

  14. Gupta AK, Gupta M, Yarwood SJ, Curtis ASG. Effect of cellular uptake of gelatin nanoparticles on adhesion, morphology and cytoskeleton organisation of human fibroblasts. J Control Release. 2004;95:197–207.

    Article  Google Scholar 

  15. Yoshikawa T, Okada N, Oda A, Matsuo K, Matsuo K, Mukai Y, Yoshioka Y, Akagi T, Akashi M, Nakagawa S. Development of amphiphilic γ-PGA-nanoparticle based tumor vaccine: potential of the nanoparticulate cytosolic protein delivery carrier. Biochem Biophys Res Commun. 2008;366:408–13.

    Article  Google Scholar 

  16. Tang J, Slowing II, Huang Y, Trewyn BG, Hu J, Liu H, et al. Poly(lactic acid)-coated mesoporous silica nanosphere for controlled release of venlafaxine. J Colloid Interface Sci. 2011;360:488–96.

    Article  Google Scholar 

  17. Liu J, Xu L, Liu C, Zhang D, Wang S, Deng Z, Lou W, Xu H, Bai Q, Ma J. Preparation and characterization of cationic curcumin nanoparticles for improvement of cellular uptake. Carbohydr Polym. 2012;90:16–22.

    Article  Google Scholar 

  18. Sun J, Bi C, Chan HM, Sun S, Zhang Q, Zheng Y. Curcumin-loaded solid lipid nanoparticles have prolonged in vitro antitumour activity, cellular uptake and improved in vivo bioavailability. Colloids Surf B. 2013;111:367–75.

    Article  Google Scholar 

  19. Kuo SM, Chiang MY, Lan CW, Niu GC-C, Chang SJ. Evaluation of nanoarchitectured collagen type II molecules on cartilage engineering. J Biomed Mater Res A. 2013;101A:368–77.

    Article  Google Scholar 

  20. Kang PL, Chen CH, Chen SY, Wu YJ, Lin CY, Lin FH, Kuo SM. Nano-sized collagen I molecules enhanced the differentiation of rat mesenchymal stem cells into cardiomyocytes. J Biomed Mater Res A. 2013;101:2808–16.

    Article  Google Scholar 

  21. Wang YJ, Pan MH, Cheng AL, Lin LI, Ho YS, Hsieh CY, Lin JK. Stability of curcumin in buffer solutions and characterization of its degradation products. J Pharm Biomed Anal. 1997;15:1867–76.

    Article  Google Scholar 

  22. Priyadarsini KI. Photophysics, photochemistry and photobiology of curcumin: studies from organic solutions, bio-mimetics and living cells. J Photochem Photobiol C. 2009;10:81–95.

    Article  Google Scholar 

  23. Shen L, Ji H-F. The pharmacology of curcumin: is it the degradation products? Trends mol med. 2012;18:138–44.

    Article  Google Scholar 

  24. Weitai W, Shuiqin Z. Hybrid micro-/nanogels for optical sensing and intracellular imaging. Nano Rev. 2010;1:5730. doi:10.3402/nano.v1i0.5730.

    Google Scholar 

  25. López-León T, Carvalho ELS, Seijo B, Ortega-Vinuesa JL, Bastos-González D. Physicochemical characterization of chitosan nanoparticles: electrokinetic and stability behavior. J Colloid Interface Sci. 2005;283:344–51.

    Article  Google Scholar 

  26. Sun J, Bi C, Chan HM, Sun S, Zhang Q, Zheng Y. Curcumin-loaded solid lipid nanoparticles have prolonged in vitro antitumour activity, cellular uptake and improved in vivo bioavailability. Colloids Surf B. 2013;111:367–75.

    Article  Google Scholar 

  27. Huang ZW, Laurent V, Chetouani G, Ljubimova JY, Holler E, Benvegnu T, Loyer P, Cammas-Marion S. New functional degradable and bio-compatible nanoparticles based on poly(malic acid) derivatives for site-specific anti-cancer drug delivery. Int J Pharm. 2012;423:84–92.

    Article  Google Scholar 

  28. Janumyan YM, Sansam CG, Chattopadhyay A, Cheng N, Soucie EL, Penn LZ, Andrews D, Knudson CM, Yang E. Bcl-xL/Bcl-2 coordinately regulates apoptosis, cell cycle arrest and cell cycle entry. EMBO J. 2003;22:5459–70.

    Article  Google Scholar 

  29. Sun S-H, Huang H-C, Huang C, Lin JK. Cycle arrest and apoptosis in MDA-MB-231/Her2 cells induced by curcumin. Eur J Pharm Sci. 2012;690:22–30.

    Article  Google Scholar 

  30. Punfa W, Yodkeeree S, Pitchakarn P, Ampasavate C, Limtrakul P. Enhancement of cellular uptake and cytotoxicity of curcumin-loaded PLGA nanoparticles by conjugation with anti-P-glycoprotein in drug resistance cancer cells. Acta Pharmacol Sin. 2012;33:823–31.

    Article  Google Scholar 

  31. Treuel L, Jiang X, Nienhaus GU. New views on cellular uptake and trafficking of manufactured nanoparticles. J R Soc Interface. 2013;10:20120939. doi:10.1098/rsif.2012.0939.

    Article  Google Scholar 

  32. Sahay G, Alakhova DY, Kabanov AV. Endocytosis of nanomedicines. J Control Release. 2010;145:182–95.

    Article  Google Scholar 

Download references

Acknowledgments

This study was supported by a Grant from the National Science Council, Taiwan (101-2221-E-214-007-MY3).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to I-Fen Chen or Shyh-Ming Kuo.

Additional information

Benjamin Teong and Chun-Hsu Yao have contributed equally to the present work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Teong, B., Lin, CY., Chang, SJ. et al. Enhanced anti-cancer activity by curcumin-loaded hydrogel nanoparticle derived aggregates on A549 lung adenocarcinoma cells. J Mater Sci: Mater Med 26, 49 (2015). https://doi.org/10.1007/s10856-014-5357-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10856-014-5357-3

Keywords

Navigation