Skip to main content

Advertisement

Log in

An alternative to nerve repair using an antioxidant compound: a histological study in rats

  • Biocompatibility Studies
  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

The fascicular composition and organisation of the inferior alveolar nerve (IAN) were determined to confirm the microarchitecture of the IAN bundles into each of the mandibular teeth, including the composition of the mental nerve. The aim of this study was to evaluate peripheral nerve repair after the application of an antioxidant compound to the damaged nerve tissue to elevate the concentration and bioavailability of elements capable of favouring tissue repair. Twenty-five Wistar rats were divided into groups: The Control 1 (Ctl 1) (n = 5) animals had the ischiatic nerve exposed with no suture injury and were sacrificed at 30 days post-operatively. The Control 2 (Ctl 2) (n = 10) animals had the ischiatic nerve exposed, and the nerve was injured using suture in three distinct regions. In the experimental (Exp) animals (n = 10), an antioxidant organic compound was applied to the nerve injury site. The animals with nerve injury (Ctl2 and Exp group) were sacrificed at 15 and 30 days post-operatively. The histological analysis showed less degeneration in the Exp group at 15 and 30 days post-operatively. Nerve neoformation forming a connection between the distal and proximal suture sites was observed in the experimental group. This study presented an alternative to nerve repair using an antioxidant compound.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Bagheri SC, Meyer RA. Management of mandibular nerve injuries from dental implants. Atlas Oral Maxillofacial Surg Clin N Am. 2011;19:47–61.

    Article  Google Scholar 

  2. Fenrich K, Gordon T. Axonal regeneration in the peripheral and central nervous systems: current issues and advances. Can J Neuro Sci. 2004;31(2):142–56.

    Article  Google Scholar 

  3. Song JW, Yang LJ, Russell SM. Peripheral nerve: what’s new in basic science laboratories. Neurosurg Clin N Am. 2009;20:121–31.

    Article  Google Scholar 

  4. Desouches C, Alluin O, Mutaftschiev N, Dousset E, Magalon G, Boucraut J, Feron F, Decherchi P. Peripheral nerve repair: 30 centuries of scientific research. Rev Neurol (Paris). 2005;161:1045–59.

    Article  Google Scholar 

  5. Ichihara S, Inada Y, Nakamura T. Artificial nerve tubes and their application for repair of peripheral nerve injury: an update of current concepts. Injury. 2008;39:29–39.

    Article  Google Scholar 

  6. Oliveira A, Pierucci A, Pereira K. Peripheral nerve regeneration through the nerve tubulization technique. Braz J Morphol Sci. 2004;21:225–31.

    Google Scholar 

  7. Braga-Silva J, Gehlen D, Padoin AV, Machado DC, Garicochea B, Costa da Costa J. Can local supply of bone marrow mononuclear cells improve the outcome from late tubular repair of human median and ulnar nerves? J Hand Surg Eur. 2008;33:488–93.

    Article  Google Scholar 

  8. Taras JS, Jacoby SM, Lincoski CJ. Reconstruction of digital nerves with collagen conduits. J Hand Surg Am. 2011;36(9):1441–6.

    Article  Google Scholar 

  9. Moore K, MacSween M, Shoichet M. Immobilized concentration gradients of neurotrophic factors guide neurite outgrowth of primary neurons in macroporous scaffolds. Tissue Eng. 2006;12:267–78.

    Article  Google Scholar 

  10. Nectow AR, Marra KG, Kaplan DL. Biomaterials for the development of peripheral nerve guidance conduits. Tissue Eng Part B Rev. 2011;18:40–50.

    Article  Google Scholar 

  11. Cunha C, Panseri S, Antonini S. Emerging nanotechnology approaches in tissue engineering for peripheral nerve regeneration. Nanomedicine. 2011;7:50–9.

    Google Scholar 

  12. Sen CK. The general case for redox control of wound repair. Wound Repair Reg. 2003;11(6):431–8.

    Article  Google Scholar 

  13. Goudarzvand M, Javan M, Mirnajafi-Zadeh J, Mozafari S, Tiraihi T. Vitamins E and D3 attenuate demyelination and potentiate remyelination processes of hippocampal formation of rats following local injection of ethidium bromide. Cell Mol Neurobiol. 2010;30:289–99.

    Article  Google Scholar 

  14. Atik B, Erkutlu I, Tercan M, Buyukhatipoglu H, Bekerecioglu M, Pence S. The effects of exogenous melatonin on peripheral nerve regeneration and collagen formation in rats. J Surg Res. 2011;166:330–6.

    Article  Google Scholar 

  15. Bader A, Pavlica S, Deiwick A, Lotkova H, Kucera O, Darsow K, Bartel S, Schulze M, Lange HA, Cervinkova Z. Proteomic analysis to display the effect of low doses of erythropoietin on rat liver regeneration. Life Sci. 2011;5:827–33.

    Article  Google Scholar 

  16. ISO document 10 993-5:2009. Biological evaluation of medical devices, Part 5, Tests for cytotoxicity: in vitro methods.

  17. Ossa CP, Rogero SO, Tschiptschin AP. Cytotoxicity study of plasma-sprayed hydroxyapatite coating on high nitrogen austenitic stainless steels. J Mater Sci Mater Med. 2006;17:1095–100.

    Article  Google Scholar 

  18. Rogero SO, Malmonge SM, Lugão AB, Ikeda TI, Miyamaru L, Cruz AS. Biocompatibility study of polymeric biomaterials. Artif Organs. 2003;27:424–7.

    Article  Google Scholar 

  19. Bennett GJ, Xie YKA. A pheripheral mononeuropathy in rat that procedures disorders of pain sensation like those seen in man. Pain. 1988;33:87–107.

    Article  Google Scholar 

  20. Robbins SL. Patologia estrutural e funcional. 4th ed. Rio de Janeiro: Guanabara Koogan; 1991.

    Google Scholar 

  21. Tosh D, Slack JMW. How cells change their phenotype. Nat Rev Mol Cell Biol. 2002;3(3):187–94.

    Article  Google Scholar 

  22. Khodr B, Khalil Z. Modulation of inflammation by reactive oxygen species: implications for aging and tissue repair. Free Radic Biol Med. 2001;30:1–8.

    Article  Google Scholar 

  23. Schubert MA, Wiggins MJ, DeFife KM, Hiltner A, Anderson JM. Vitamin E as an antioxidant for poly (etherurethane urea): in vivo studies. J Biomed Mater Res. 1996;32:493–504.

    Article  Google Scholar 

  24. Udipi K, Ornberg RL, Thurmond BK II, Settle ST, Forster D, Riley D. Modification of inflammatory response to implanted biomedical materials in vivo by surface bound superoxide dismutases mimics. Biomed Mater Res. 2000;51:549–60.

    Article  Google Scholar 

  25. Okada K, Tanaka H, Temporin K, Okamoto M, Kuroda Y, Moritomo H, Murase T, Yoshikawa H. Methylcobalamin increases Erk1/2 and Akt activities through the methylation cycle and promotes nerve regeneration in a rat sciatic nerve injury model. Exp Neurol. 2010;222:191–203.

    Article  Google Scholar 

  26. Lehninger AB. Princípios de bioquímica. 4th ed. São Paulo: Ed Savier; 2006.

    Google Scholar 

  27. Gurlek A, Pittelkow MR, Kumar R. Modulation of growth factor/cytokine synthesis and signaling by 1alpha,25-dihydroxyvitamin D(3): implications in cell growth and differentiation. Endocr Rev. 2002;23:763–86.

    Article  Google Scholar 

  28. Powell SR. The antioxidant properties of zinc. J Nutr. 2000;130:1447S–54S.

    Google Scholar 

  29. Ho E. Zinc deficiency, DNA damage and cancer risk. J Nutr Biochem. 2004;15:572–8.

    Article  Google Scholar 

  30. Sidhu P, Garg ML, Dhawan DK. Protective effects of zinc on oxidative stress enzymes in liver of protein-deficient rats. Drug Chem Toxicol. 2005;28(2):211–30.

    Article  Google Scholar 

  31. Chung RS, Penkowa M, Dittmann J, King CE, Bartlett C, Asmussen JW, Hidalgo J, Carrasco J, Leung YK, Walker AK, Fung SJ, Dunlop SA, Fitzgerald M, Beazley LD, Chuah MI, Vickers JC, West AK. Redefining the role of metallothionein within the injured brain: extracellular metallothioneins play an important role in the astrocyte-neuron response to injury. J Biol Chem. 2008;283:15349–58.

    Article  Google Scholar 

  32. Bajpai S, Mishra M, Kumar H, Tripathi K, Singh SK, Pandey HP, Singh RK. Effect of selenium on connexin expression, angiogenesis, and antioxidant status in diabetic wound healing. Biol Trace Elem Res. 2011;144:327–38.

    Article  Google Scholar 

  33. Jiang F, Zhang Y, Dusting GJ. NADPH oxidase-mediated redox signaling: roles in cellular stress response, stress tolerance, and tissue repair. Pharmacol Rev. 2011;63:218–42.

    Article  Google Scholar 

  34. Touyz RM, Briones AM. Reactive oxygen species and vascular biology: implications in human hypertension. Hypertens Res. 2011;34(1):5–14.

    Article  Google Scholar 

  35. Schulz A, Walther C, Morrison H, Bauer R (2014) In vivo electrophysiological measurements on mouse sciatic nerves. J Vis Exp 86. doi:10.3791/51181.

Download references

Acknowledgments

We express our gratitude to Dra. Maria Inês Nogueira from the Laboratory of Neurosciences ICB/USP for collaboration in the data collection.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergio A. Gehrke.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salles, M.B., Gehrke, S.A., Koo, S. et al. An alternative to nerve repair using an antioxidant compound: a histological study in rats. J Mater Sci: Mater Med 26, 14 (2015). https://doi.org/10.1007/s10856-014-5340-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10856-014-5340-z

Keywords

Navigation