Skip to main content
Log in

Antimicrobial and in vitro wound healing properties of novel clay based bionanocomposite films

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

The present study investigates the development of methyl cellulose (MC)–sodium alginate (SA)–montmorillonite (MMT) clay based bionanocomposite films with interesting wound healing properties. The differential scanning calorimetry analysis of the composite films revealed presence of single glass transition temperature (Tg) confirming the miscible nature of the ternary blended films. The increase in MMT ratio in the composite films reduced the mobility of biopolymer chains (MC/SA) which increased the Tg of the film. Thermogravimetric analysis showed that dispersion of clay (MMT) at nano level significantly delayed the weight loss that correlated with higher thermal stability of the composite films. It was observed that the developed films were able to exhibit antimicrobial activity against four typical pathogenic bacteria found in the presence of wound. The developed films were able to significantly inhibit (10 mg/ml) the growth of Enterococcus faecium and Pseudomonas aeruginosa. In vitro scratch assay indicated potential wound closure activities of MC-2–4 bionanocomposite films at their respective highest subtoxic doses. In conclusion, these ternary bionanocomposite films were found to be promising systems for wound healing applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Zahedi P, Rezaeian I, Ranaei-Siadat SO, Jafari SH, Supaphol P. A review on wound dressings with an emphasis on electrospun nanofibrous polymeric bandages. Polym Adv Technol. 2010;21:77–95.

    Google Scholar 

  2. Gupta A, Kumar R, Pal K, Singh V, Banerjee PK, Sawhney RC. Influence of sea buckthorn (Hippophae rhamnoides L.) flavone on dermal wound healing in rats. Mol Cell Biochem. 2006;290:193–8.

    Article  Google Scholar 

  3. Clark RAF. Wound repair: overview and general considerations. In: Clark RA, Henson PM, editors. The molecular and cellular biology of wound repair. New York: Plenum Press; 1996. p. 3–50.

    Google Scholar 

  4. William W, Vincent W. Angiogenesis in wound healing. In: Supplement to contemporary surgery. Montvale: Dowden Health Media; 2003.

  5. Sudheesh Kumar PT, Abhilash S, Manzoor K, Nair SV, Tamura H, Jayakumar R. Preparation and characterization of novel b-chitin/nanosilver composite scaffolds for wound dressing applications. Carbohydr Polym. 2010;80:761–7.

    Article  Google Scholar 

  6. Shuangyun L, Wenjuan G, Gu HY. Construction, application and biosafety of silver nanocrystalline chitosan wound dressing. Burns. 2008;34:623–8.

    Article  Google Scholar 

  7. Sikareepaisan P, Ruktanonchai U, Supaphol P. Preparation and characterization of asiaticoside-loaded alginate films and their potential for use as effectual wound dressings. Carbohydr Polym. 2011;83:1457–69.

    Article  Google Scholar 

  8. Jayakumar R, Prabaharan M, Nair SV, Tamura H. Novel chitin and chitosan nanofibers in biomedical applications. Biotechnol Adv. 2010;28:142–50.

    Article  Google Scholar 

  9. Lin WC, Lien CC, Yeh HJ, Yu CM, Hsu SH. Bacterial cellulose and bacterial cellulose–chitosan membranes for wound dressing applications. Carbohydr Polym. 2013;94:603–11.

    Article  Google Scholar 

  10. Mishra RK, Majeed ABA, Banthia AK. Development and characterization of pectin/gelatin hydrogel membranes for wound dressing. Int J Plast Technol. 2011;15:82–95.

    Article  Google Scholar 

  11. Arockianathan PM, Sekar S, Kumaran B, Sastry TP. Preparation, characterization and evaluation of biocomposite films containing chitosan and sago starch impregnated with silver nanoparticles. Int J Biol Macromol. 2012;50:939–46.

    Article  Google Scholar 

  12. Park JS, Park JW, Ruckenstein E. Thermal and dynamic mechanical analysis of PVA/MC blend hydrogels. Polymer. 2001;42:4271–80.

    Article  Google Scholar 

  13. Teli SB, Gokavi GS, Aminabhavi TM. Novel sodium alginate–poly(N-isopropylacrylamide) semi-interpenetrating polymer network membranes for pervaporation separation of water + ethanol mixtures. Sep Purif Technol. 2007;56:150–7.

    Article  Google Scholar 

  14. Yang L, Ma X, Guo N. Sodium alginate/Na+–rectorite composite microspheres: preparation, characterization, and dye adsorption. Carbohydr Polym. 2012;90:853–8.

    Article  Google Scholar 

  15. Smitha B, Sridhar S, Khan AA. Chitosan–sodium alginate polyion complexes as fuel cell membranes. Eur Polym J. 2005;41:1859–66.

    Article  Google Scholar 

  16. Caykara T, Demirci S, Eroglu MS, Guven O. Poly(ethylene oxide) and its blends with sodium alginate. Polymer. 2005;46:10750–7.

    Article  Google Scholar 

  17. Kong Q, Yu Z, Ji Q, Xia Y. Electrospinning of sodium alginate with poly(ethylene oxide), gelatin and nanometer silver colloid. Mater Sci Forum. 2009;610:1188–91.

    Article  Google Scholar 

  18. Li Z, Zhang M. Chitosan–alginate as scaffolding material for cartilage tissue engineering. J Biomed Mater Res A. 2005;75A:485–93.

    Article  Google Scholar 

  19. Alsberg E, Kong HJ, Hirano Y, Smith MK, Albeiruit A, Mooney DJ. Regulating bone formation via controlled scaffold degradation. J Dent Res. 2003;82:903–8.

    Article  Google Scholar 

  20. Divyarani VV, Ramachandran R, Chennazhi KP, Tamura H, Nair SV, Jayakumar R. Fabrication of alginate/nanoTiO2 needle composite scaffolds for tissue engineering applications. Carbohydr Polym. 2010;83:858–64.

    Google Scholar 

  21. Yang J, Chung TW, Nagaoka M, Goto M, Cho CS, Akaike T. Hepatocyte-specific porous polymer-scaffolds of alginate/galactosylated chitosan sponge for liver-tissue engineering. Biotechnol Lett. 2001;23:1385–9.

    Article  Google Scholar 

  22. Liu H, Chaudhary D, Yusa S, Tade MO. Glycerol/starch/Na+–montmorillonite nanocomposites: a XRD, FTIR, DSC and H NMR study. Carbohydr Polym. 2010;83:1591–7.

    Article  Google Scholar 

  23. Meng N, Zhou NL, Zhang SQ, Shen J. Synthesis and antimicrobial activities of polymer/montmorillonite–chlorhexidine acetate nanocomposite films. Appl Clay Sci. 2009;42:667–70.

    Article  Google Scholar 

  24. Emami-Razavi SH, Esmaeili N, Forouzannia SK, Amanpour S, Rabbani S, Alizadeh AM, Mohagheghi MA. Effect of bentonite on skin wound healing: experimental study in the rat model. Acta Med Iran. 2006;44:235–40.

    Google Scholar 

  25. Gómez-Estaca J, López de Lacey A, López-Caballero ME, Gómez-Guillén MC, Montero P. Biodegradable gelatin–chitosan films incorporated with essential oils as antimicrobial agents for fish preservation. Food Microbiol. 2010;27:889–96.

    Article  Google Scholar 

  26. Wang Q, Hu X, Du Y, Kennedy JF. Alginate/starch blend fibers and their properties for drug controlled release. Carbohydr Polym. 2010;82:842–7.

    Article  Google Scholar 

  27. Pereda M, Ponce AG, Marcovich NE, Ruseckaite RA, Martucci JF. Chitosan–gelatin composites and bi-layer films with potential antimicrobial activity. Food Hydrocoll. 2011;25:1372–81.

    Article  Google Scholar 

  28. Salcedo I, Aguzzi C, Sandri G, Bonferoni MC, Mori M, Carezo P, Sanchez R, Viseras C, Carmella C. In vitro biocompatibility and mucoadhesion of montmorillonite chitosan nanocomposite: a new drug delivery. Appl Clay Sci. 2012;55:131–7.

    Article  Google Scholar 

  29. Popryadukhin PV, Dobrovolskaya IP, Yudin VE, Mvankova IE, Smolyaninov AB, Smirnova NV. Composite materials based on chitosan and mont-morillonite prospects for use as matrix for culturing of stem and regenerative cells. Cell Tissue Biol. 2012;6:82–8.

    Article  Google Scholar 

  30. Yoshii F, Zhanshan Y, Isobe K, Shiozaki K, Makunchi K. Electron beam crosslinked PEO and PEO/PVA hydrogels for wound dressing. Radiat Phys Chem. 1999;55:133–8.

    Article  Google Scholar 

  31. Gao D, Heimann RB. Structure and mechanical properties of superabsorbent poly(acrylamide) montmorillonite composite hydrogels. Polym Gels Netw. 1993;1:225–46.

    Article  Google Scholar 

  32. Churochkina NA, Staroduubstev SG, Khokhlov AR. Swelling and collapse of the gel composite based on neutral and slightly charged poly(acrylamide) gels containing Na–montmorillonite. Polym Gels Netw. 1998;6:205–15.

    Article  Google Scholar 

  33. Viseras C, Aguzzi C, Cerezo P, Bedmar MC. Biopolymer–clay nanocomposites for controlled drug delivery. Mater Sci Technol. 2008;24:1020–6.

    Article  Google Scholar 

  34. Viseras C, Cerezo P, Sanchez R, Salcedo I, Aguzzi C. Current challenges in clay minerals for drug delivery. Appl Clay Sci. 2010;48:291–5.

    Article  Google Scholar 

  35. Sandri G, Bonferoni MC, Ferrari F, Rossi S, Aguzzi C, Mori M, Grisoli P, Cerezo P, Tenci M, Viseras C, Caramella C. Montmorillonite–chitosan–silver sulfadiazine nanocomposites for topical treatment of chronic skin lesions: in vitro biocompatibility, antibacterial efficacy and gap closure cell motility properties. Carbohydr Polym. 2014;102:970–7.

    Article  Google Scholar 

  36. Lee KY, Shim J, Lee HG. Mechanical properties of gellan and gelatin composite films. Carbohydr Polym. 2004;56:251–4.

    Article  Google Scholar 

  37. Rao MS, Kanatt SR, Chawla SP, Sharma A. Chitosan and guar gum composite films: preparation, physical, mechanical and antimicrobial properties. Carbohydr Polym. 2010;82:1243–7.

    Article  Google Scholar 

  38. Eloff JN. A sensitive and quick microplate method to determine the minimal inhibitory concentration of plant extracts for bacteria. Planta Med. 1998;64:711–3.

    Article  Google Scholar 

  39. Hazalin NAMN, Ramasamy K, Lim SM, Wahab IA, Cole ALJ, Majeed ABA. Cytotoxic and antibacterial activities of endophytic fungi isolated from plants at the National Park, Pahang, Malaysia. BMC Complement Altern Med. 2009;5:1–5.

    Google Scholar 

  40. Rimdusit S, Jingjit S, Damrongsakkul S, Tiptipakorn S, Takeichi T. Biodegradability and property characterizations of methyl cellulose: effect of nanocompositing and chemical crosslinking. Carbohydr Polym. 2008;72:444–55.

    Article  Google Scholar 

  41. Ul-Islam M, Khan T, Park JK. Nanoreinforced bacterial cellulose–montmorillonite composites for biomedical applications. Carbohydr Polym. 2012;89:1189–97.

    Article  Google Scholar 

  42. Miura K, Kimura N, Suzuki H, Miyashita Y, Nishio Y. Thermal and viscoelastic properties of alginate/poly(vinyl alcohol) blends cross-linked with calcium tetraborate. Carbohydr Polym. 1999;39:139–44.

    Article  Google Scholar 

  43. Olabishi O, Robeson LM, Shaw MT. Methods for determining polymer–polymer miscibility. In: Polymer–polymer miscibility. New York: Academic Press; 1979. p. 117–193.

  44. Kumar P, Sandeep KP, Alavi S, Truong VD, Gorga RE. Preparation and characterization of bio-nanocomposite films based on soy protein isolate and montmorillonite using melt extrusion. J Food Eng. 2010;100:480–9.

    Article  Google Scholar 

  45. Zohuriaan MJ, Shokrolahi F. Thermal studies on natural and modified gums. Polym Test. 2004;23:575–9.

    Article  Google Scholar 

  46. Tunc S, Angellier H, Cahyana Y, Chalier P, Gontard N, Gastaldi E. Functional properties of wheat gluten/montmorillonite nanocomposite films processed by casting. J Membr Sci. 2007;289:159–68.

    Article  Google Scholar 

  47. Wang SF, Shen L, Tong YJ, Chen L, Phang IY, Lim PQ, Liu TX. Biopolymer chitosan/montmorillonite nanocomposites: preparation and characterization. Polym Degrad Stab. 2005;90:123–31.

    Article  Google Scholar 

  48. Darder M, Colilla M, Ruiz-Hitzky E. Biopolymer–clay nanocomposites based on chitosan intercalated in montmorillonite. Chem Mater. 2003;15:3774–80.

    Article  Google Scholar 

  49. Gunister E, Pestreli D, Unlu CH, Atici O, Gungor N. Synthesis and characterization of chitosan–MMT biocomposite systems. Carbohydr Polym. 2007;67:358–65.

    Article  Google Scholar 

  50. Kanti P, Srigowri K, Madhuri J, Smitha B, Sridhar S. Dehydration of ethanol through blend membranes of chitosan and sodium alginate by pervaporation. Sep Purif Technol. 2004;40:259–66.

    Article  Google Scholar 

  51. Barth C, Goncalves MC, Pires ATN, Roeder J, Walf BA. Asymmetric PS and PES membranes: effect of thermodynamic conditions during formation on their performance. J Membr Sci. 2000;169:287–99.

    Article  Google Scholar 

  52. van de Witte P, Dijkstra PJ, Van den Berg JWA, Feijen J. Phase separation processes in polymer solutions in relation to membrane formation. J Membr Sci. 1996;117:1–31.

    Article  Google Scholar 

  53. Agag T, Koga T, Takeichi T. Studies on thermal and mechanical properties of polyimide–clay nanocomposites. Polymer. 2001;42:3399–408.

    Article  Google Scholar 

  54. Xu Y, Zhou J, Hanna MA. Melt-intercalated starch acetate nanocomposite foams as affected by type of organoclay. Cereal Chem. 2005;82:105–10.

    Article  Google Scholar 

  55. Park HM, Misra M, Drzal LT, Mohanty AK. “Green” nanocomposites from cellulose acetate bioplastic and clay: effect of eco-friendly triethyl citrate plasticizer. Biomacromolecules. 2004;5:2281–8.

    Article  Google Scholar 

  56. Prasanth R, Shubha N, Hng HH, Srinivasan M. Effect of nano-clay on ionic conductivity and electrochemical properties of poly(vinylidene fluoride) based nanocomposite porous polymer membranes and their application as polymer electrolyte in lithium ion batteries. Eur Polym J. 2013;49:307–18.

    Article  Google Scholar 

  57. Tunç S, Duman O. Preparation of active antimicrobial methyl cellulose/carvacrol/montmorillonite nanocomposite films and investigation of carvacrol release. LWT Food Sci Technol. 2011;44:465–72.

    Article  Google Scholar 

  58. Tunç S, Duman O. Preparation and characterization of biodegradable methyl cellulose/montmorillonite nanocomposite films. Appl Clay Sci. 2010;48:414–24.

    Article  Google Scholar 

  59. Haq M, Burgueño R, Mohanty AK, Misra M. Processing techniques for bio-based unsaturated-polyester/clay nanocomposites: tensile properties, efficiency, and limits. Composites A. 2009;40:394–403.

    Article  Google Scholar 

  60. Pielesz A, Machnicka A, Sarna E. Antibacterial activity and scanning electron microscopy (SEM) examination of alginate-based films and wound dressings. Ecol Chem Eng. 2011;18:197–210.

    Google Scholar 

  61. Covarrubias SA, de-Bashan LE, Moreno M, Bashan Y. Alginate beads provide a beneficial physical barrier against native microorganisms in wastewater treated with immobilized bacteria and microalgae. Appl Microbiol Biotechnol. 2012;93:2669–80.

    Article  Google Scholar 

  62. Lee YH, Chen B, Lin F, Lin K. Cytotoxic assessment of l-Ascorbic acid/Montmorillonite upon human dermal fibroblasts. In vitro: MTT activity assay. BME. 2008;20:337–43.

    Google Scholar 

  63. Lee YH, Kuo TF, Chen BY, Feng YK, Wen YR, Lin WC, Lin FH. Toxicity assessment of montmorillonite as a drug carrier for pharmaceutical applications: yeast and rats model. BME. 2005;17:72–8.

    Google Scholar 

  64. Haroun A, Gamal-Eldeen A, Harding DRK. Preparation, characterization and in vitro biological study of biomimetic three-dimensional gelatin–montmorillonite/cellulose scaffold for tissue engineering. J Mater Sci Mater Med. 2009;20:2527–40.

    Article  Google Scholar 

  65. Bijman MN, Van Nieuw Amerongen GP, Laurens N, Van Hinsbergh VW, Boven E. Microtubule-targeting agents inhibit angiogenesis at subtoxic concentrations, a process associated with inhibition of Rac1 and Cdc42 activity and changes in the endothelial cytoskeleton. Mol Cancer Ther. 2006;5:2348–57.

    Article  Google Scholar 

  66. Canal-Raffin M, L’azou B, Martinez B, Sellier E, Fawaz F, Robinson P, Brochard P. Physicochemical characteristics and bronchial epithelial cell cytotoxicity of Folpan 80 WG(R) and Myco 500(R), two commercial forms of folpet. Part Fibre Toxicol. 2007;4:1–13.

    Article  Google Scholar 

  67. Vaiana CA, Leonard MK, Drummy LF, Singh KM, Bubulya A, Vaia RA, Naik RR, Kadakia MP. Epidermal growth factor: layered silicate nanocomposites for tissue regeneration. Biomacromolecules. 2011;12:3139–46.

    Article  Google Scholar 

  68. Porter S. The role of the fibroblast in wound contraction and healing. Wounds UK. 2007;3:33–40.

    Google Scholar 

  69. Brem H, Kodra A, Golinko MS, Entero H, Stojadinovic O, Wang VM, Sheahan CM, Weinberg AD, Woo SLC, Ehrlich HP, Tomic-Canic M. Mechanism of sustained release of vascular endothelial growth factor in accelerating experimental diabetic healing. J Investig Dermatol. 2009;129:2257–87.

    Google Scholar 

Download references

Acknowledgments

The Universiti Teknologi MARA (UiTM) is thanked for the financial support under the Research Intensive Fund (RIF) 600 RMI/DANA 5/3/RIF (734/2012) and Long Term Research Grant Scheme (600-RMI/LRGS 5/3, 2/2012).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to R. K. Mishra or A. B. A. Majeed.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mishra, R.K., Ramasamy, K., Lim, S.M. et al. Antimicrobial and in vitro wound healing properties of novel clay based bionanocomposite films. J Mater Sci: Mater Med 25, 1925–1939 (2014). https://doi.org/10.1007/s10856-014-5228-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-014-5228-y

Keywords

Navigation