Skip to main content
Log in

Survival-rate analysis of surface treated dental zirconia (Y-TZP) ceramics

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

The role of surface preparation, hydrothermal ageing exposure and subsequent cyclic fatigue testing on the biaxial strength of a dental Y-TZP material are investigated. The initial strength and survival rate of a dental Y-TZP ceramic material to fatigue testing was found to be highly dependent upon surface preparation more so than exposure to various hydrothermal exposure conditions. The results suggest that the monoclinic phase generated by either surface damage (especially sandblasting) and to a lesser extent hydrothermal exposure does appear to mitigate strength and fatigue degradation. The results are discussed in terms of the size of defects generated following various surface treatments and the role of cyclic fatigue induced crack growth. A critical ratio is established between the monotonic strength and fatigue stress survival. From the specimens that failed and exhibited reduced strength after cycling a plot of averaged crack growth rate versus max cyclic stress intensity factor was established which closely matched existing results for Y-TZP ceramics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Rekow D, Thompson VP. Engineering long term clinical success of advanced ceramic prostheses. J Mater Sci Mater Med. 2007;18:47–56.

    Article  Google Scholar 

  2. Sailer I, Pjetursson BE, Zwahlen M, Hämmerle CHF. A systematic review of the survival and complication rates of all-ceramic reconstructions after an observation period of at least 3 years. Part II: fixed dental prostheses. Clin Oral Impl Res. 2007;18:86–96.

    Article  Google Scholar 

  3. Pjetursson BE, Sailer I, Zwahlen M, Hämmerle CHF. A systematic review of the survival and complication rates of all-ceramic reconstructions after an observation period of at least 3 years. Part I: single crowns. Clin Oral Impl Res. 2007;18:73–85.

    Article  Google Scholar 

  4. Raigrodski AJ, Hillstead MB, Meng GK, Chung KH. Survival and complications of zirconia-based fixed dental prostheses: a systematic review. J Prosthet Dent. 2012;107:170–7.

    Article  Google Scholar 

  5. Denry I, Kelly JR. State of the art of zirconia for dental applications. Dent Mater. 2008;24:299–307.

    Article  Google Scholar 

  6. Kern M. Bond strength of luting cements to zirconium oxide ceramics. Int J Prosthodont. 2000;13:30–5.

    Google Scholar 

  7. Re D, Augusti D, Sailer I, Spreafico D, Cerutti A. The effect of surface treatment on the adhesion of resin cements to Y-TZP. Eur J Esthet Dent. 2008;3:186–96.

    Google Scholar 

  8. Kosmač T, Oblak Č, Jevnikar P, Funduk N, Marion L. The effect of grinding and sandblasting on flexural strength and reliability of Y-TZP zirconia ceramic. Dent Mater. 1999;15:426–33.

    Article  Google Scholar 

  9. Kosmač T, Oblak Č, Jevnikar P, Funduk N, Marion L. Strength and reliability of surface treated Y-TZP dental ceramics. J Biomed Mater Res. 2000;53:304–13.

    Article  Google Scholar 

  10. Xu H, Jahanmir S, Ives LK. Effect of grinding on strength of tetragonal zirconia and zirconia-toughened alumina. Mach Sci Technol. 1997;1:49–66.

    Article  Google Scholar 

  11. Sato H, Yamada K, Pezzotti G, Nawa M, Ban S. Mechanical properties of dental zirconia ceramics changed with sandblasting and heat treatment. Dent Mater J. 2008;27:408–14.

    Article  Google Scholar 

  12. Scherrer SS, Cattani-Lorente M, Vittecoq E, Mestral F, Griggs JA, Wiskott HW. Fatigue behavior in water of Y-TZP zirconia ceramics after abrasion with 30 μm silica-coated alumina particles. Dent Mater. 2011;27:28–42.

    Article  Google Scholar 

  13. Kobayashi K, Kuwajima H, Masaki T. Phase change and mechanical properties of ZrO2-Y2O3 solid state electrolyte after ageing. Solid State Ion. 1981;3:489–95.

    Article  Google Scholar 

  14. Chevalier J, Gremillard L, Deville S. Low temperature degradation and implications for biomedical implants. Annu Rev Mater Res. 2007;37:1–32.

    Article  Google Scholar 

  15. Swain MV. Impact of oral fluids on dental ceramics: what is the clinical relevance? Dent Mater. 2014;30:33–42.

    Article  Google Scholar 

  16. Raigrodski AJ, Yu A, Chiche GJ, Hochstedler JL, Mancl LA, Mohamed SE. Clinical efficacy of veneered zirconium dioxide-based posterior partial fixed dental prostheses: five-year results. J Prosthet Dent. 2012;108:214–22.

    Article  Google Scholar 

  17. Peláez J, Cogolludo PG, Serrano B, Lozano JF, Suárez MJ. A prospective evaluation of zirconia posterior fixed dental prostheses: three-year clinical results. J Prosthet Dent. 2012;107:373–9.

    Article  Google Scholar 

  18. Scott HG. Phase relationships in the zirconia-yttria system. J Mat Sci. 1975;10:1527–35.

    Article  Google Scholar 

  19. Arvidson K, Johansson EG. Galvanic current between dental alloys in vitro. Scand J Dent Res. 1985;93:467–73.

    Google Scholar 

  20. Keuper M, Berthold C, Nickel KG. Long-time aging in 3 mol.% yttria-stabilized tetragonal zirconia polycrystals at human body temperature. Acta Biomater. 2014;10:951–9.

    Article  Google Scholar 

  21. Garvie RC, Nicholson PS. Phase analysis in zirconia systems. J Am Ceram Soc. 1972;55:303–5.

    Article  Google Scholar 

  22. Wachtman JB, Capps W, Mandel J. Biaxial flexure tests of ceramic substrates. J Mater. 1972;7:188–94.

    Google Scholar 

  23. Chevalier J, Olagnon C, Fantozzi G. Subcritical crack propagation in 3Y-TZP ceramics: static and cyclic fatigue. J Am Ceram Soc. 1999;82:3129–38.

    Article  Google Scholar 

  24. Kitano Y, Mori Y, Ishitani A, and Masaki T, A study of rhombohedral phase in Y2O3-partially stabilized zirconia. In: Materials Research Society symposia proceedings, vol. 78. 1987. p. 17–24

  25. Denry IL, Holloway JA. Microstructural and crystallographic surface changes after grinding zirconia-based dental ceramics. J Biomed Mater Res B. 2006;76:440–8.

    Article  Google Scholar 

  26. Virkar AV, Matsumoto RLK. Ferroelastic domain switching as a toughening mechanism in tetragonal zirconia. J Am Ceram Soc. 1986;69:C224–6.

    Article  Google Scholar 

  27. Munoz-Tabares JA, Jimenez-Pique E, Reyes-Gasga J, Anglada M. Microstructural changes in ground 3Y-TZP and their effect on mechanical properties. Acta Mater. 2011;59:6670–83.

    Article  Google Scholar 

  28. Whalen PJ, Reidinger F, Antrim RF. Prevention of low-temperature surface transformation by surface recrystallization in yttria-doped tetragonal zirconia. J Am Ceram Soc. 1989;72:319–21.

    Article  Google Scholar 

  29. Morena M, Beaudreau GM, Lockwood PE, Evans AL. Fatigue of dental ceramics in a simulated oral environment. J Dent Res. 1986;65:993–7.

    Article  Google Scholar 

  30. Studart AR, Filser F, Kochler P, Gauckler LJ. Fatigue of zirconia under cyclic loading in water and its implications for the design of dental bridges. Dent Mater. 2007;23:106–14.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomaz Kosmac.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oblak, C., Verdenik, I., Swain, M.V. et al. Survival-rate analysis of surface treated dental zirconia (Y-TZP) ceramics. J Mater Sci: Mater Med 25, 2255–2264 (2014). https://doi.org/10.1007/s10856-014-5217-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-014-5217-1

Keywords

Navigation