Skip to main content

Advertisement

Log in

Bioactive magnetic nanoparticles of Fe–Ga synthesized by sol–gel for their potential use in hyperthermia treatment

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Hyperthermia is one of the most recents therapies for cancer treatment using particles with nanometric size and appropriate magnetic properties for destroying cancer cells. Magnetic nanoparticles (MNP’s) of Fe–Ga and synthesized using a polycondensation reaction by sol–gel method were obtained. MNP’s of Fe1.4Ga1.6O4 that posses an inverse spinel structure were identified by X-Ray Diffraction, Transmission Electron Microscopy, Scanning Electron Microscopy and Energy Dispersive Spectroscopy. The results showed that the MNP’s are composed only by Fe, Ga and O and their size is between 15 and 20 nm. The magnetic properties measured by Vibration Sample Magnetometry demonstrated a saturation magnetization value of 37.5 emu/g. To induce the MNP’s bioactivity, a biomimetic method was used which consisted in the immersion of MNP’s in a Simulated Body Fluid (SBF) for different periods of time (7, 14 and 21d) along with a wollastonite disk. The formation of a bioactive layer, which closely resembles that formed on the existing bioactive systems and with a Ca/P atomic ratio within a range of 1.37–1.73 was observed on the MNP’s. Cytotoxicity of MNP’s was evaluated by in vitro hemolysis testing using human red blood cells at concentrations between 0.25 and 6.0 mg/mL. It was found that the MNP’s were not cytotoxic at none of the concentrations used. The results indicate that Fe–Ga MNP’s are potential materials for cancer treatment of both hard and soft tissue by hyperthermia and drug carriers, among other applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Jemal A, Siegel R. Cancer Facts and Figures 2011. Atlanta: American Cancer Society, Inc.; 2011.

    Google Scholar 

  2. Macarulla MT, Javier PF. Comprender el cancer. Editorial AMAT; 2009.

  3. Chicheł A, Skowronek J, Kubaszewska M, Kanikowski M. Hyperthermia—description of a method and a review of clinical applications. Rep Pract Oncol Radiother. 2007;12(5):267–75. doi:10.1016/S1507-1367(10)60065-X..

    Article  Google Scholar 

  4. Hernández AV, Quero JEC, Salas LL, Mier YH, Marchal C, Eléctrica SB. Hipertermia electromagnética, una alternativa para el tratamiento del cáncer: antecedentes, aspectos físicos y biológicos. Rev Mex Ing Biom. 2001;002:78–88.

    Google Scholar 

  5. Medeiros S, Santos A, Fessi H, Elaissari A. Stimuli-responsive magnetic particles for biomedical applications. Int J Pharm. 2011;403(1):139–61.

    Article  Google Scholar 

  6. Faiyas A, Vinod E, Joseph J, Ganesan R, Pandey R. Dependence of pH and surfactant effect in the synthesis of magnetite (Fe3O4) nanoparticles and its properties. J Magn Magn Mater. 2010;322(4):400–4.

    Article  Google Scholar 

  7. Fraga AF, Bini RA, Guastaldi AC. Bioactive coating on titanium implants modified by Nd:YVO4 laser. Appl Surf Sci. 2011;257(10):4575–80.

    Article  Google Scholar 

  8. Mahmoudi M, Sant S, Wang B, Laurent S, Sen T. Superparamagnetic iron oxide nanoparticles (SPIONs): development, surface modification and applications in chemotherapy. Adv Drug Deliv Rev. 2011;63(1):24–46.

    Article  Google Scholar 

  9. Figuerola A, Di Corato R, Manna L, Pellegrino T. From iron oxide nanoparticles towards advanced iron-based inorganic materials designed for biomedical applications. Pharm Res. 2010;62(2):126–43.

    Article  Google Scholar 

  10. Sun S, Zeng H. Size-controlled synthesis of magnetite nanoparticles. J Am Chem Soc. 2002;124(28):8204–5.

    Article  Google Scholar 

  11. Shinkai M, Yanase M, Honda H, Wakabayashi T, Yoshida J, Kobayashi T. Intracellular hyperthermia for cancer using magnetite cationic liposomes: in vitro study. Cancer Sci. 1996;87(11):1179–83.

    Article  Google Scholar 

  12. Rosen JE, Chan L, Shieh D-B, Gu FX. Iron oxide nanoparticles for targeted cancer imaging and diagnostics. Nanomed Nanotechnol Biol Med. 2012;8(3):275–90.

    Article  Google Scholar 

  13. Ma M, Zhang Y, Yu W, Shen H-y, Zhang H-q, Gu N. Preparation and characterization of magnetite nanoparticles coated by amino silane. Coll Surf A. 2003;212(2):219–26.

    Article  Google Scholar 

  14. Singh RK, Kim TH, Patel KD, Knowles JC, Kim HW. Biocompatible magnetite nanoparticles with varying silica-coating layer for use in biomedicine: physicochemical and magnetic properties, and cellular compatibility. J Biomed Mater Res A. 2012;100(7):1734–42.

    Article  Google Scholar 

  15. Baba D, Seiko Y, Nakanishi T, Zhang H, Arakaki A, Matsunaga T, et al. Effect of magnetite nanoparticles on living rate of MCF-7 human breast cancer cells. Coll Surf B. 2012;95:254–7.

    Article  Google Scholar 

  16. Kawashita M, Tanaka M, Kokubo T, Inoue Y, Yao T, Hamada S, et al. Preparation of ferrimagnetic magnetite microspheres for in situ hyperthermic treatment of cancer. Biomaterials. 2005;26(15):2231–8.

    Article  Google Scholar 

  17. Escobedo-Bocardo JC, Cortés-Hernández DA, Múzquiz-Ramos E, Herrera-Romero O, editors. Preparation and properties of CoFe2O4 synthesized by the modified citrate-gel method. Materials Science Forum; 2010: Trans Tech Publ.

  18. Stoia M, Barvinschi P, Tudoran LB, Barbu M, Stefanescu M. Synthesis of nanocrystalline nickel ferrite by thermal decomposition of organic precursors. J Therm Anal Calorim. 2012;108(3):1033–9.

    Article  Google Scholar 

  19. Sheykhan M, Mohammadnejad H, Akbari J, Heydari A. Superparamagnetic magnesium ferrite nanoparticles: a magnetically reusable and clean heterogeneous catalyst. Tetrah Lett. 2012;53(24):2959–64.

    Article  Google Scholar 

  20. Huang C-C, Su C-H, Liao M-Y, Yeh C-S. Magneto-optical FeGa2O4 nanoparticles as dual-modality high contrast efficacy T2 imaging and cathodoluminescent agents. Phys Chem Chem Phys. 2009;11(30):6331–4.

    Article  Google Scholar 

  21. Yang H, Zhang C, Shi X, Hu H, Du X, Fang Y, et al. Water-soluble superparamagnetic manganese ferrite nanoparticles for magnetic resonance imaging. Biomaterials. 2010;31(13):3667–73.

    Article  Google Scholar 

  22. Warrell RP. Gallium nitrate for the treatment of bone metastases. Cancer. 1997;80(S8):1680–5.

    Article  Google Scholar 

  23. Gómez-Ruiz S, Gallego B, Kaluđerović MR, Kommera H, Hey-Hawkins E, Paschke R, et al. Novel gallium (III) complexes containing phthaloyl derivatives of neutral aminoacids with apoptotic activity in cancer cells. J Organomet Chem. 2009;694(14):2191–7.

    Article  Google Scholar 

  24. Enyedy ÉA, Dömötör O, Varga E, Kiss T, Trondl R, Hartinger CG, et al. Comparative solution equilibrium studies of anticancer gallium (III) complexes of 8-hydroxyquinoline and hydroxy (thio) pyrone ligands. J Inorg Biochem. 2012;117:189–97.

    Article  Google Scholar 

  25. Jakupec MA, Galanski M, Arion VB, Hartinger CG, Keppler BK. Antitumour metal compounds: more than theme and variations. Dalton Trans. 2008;2:183–94.

    Article  Google Scholar 

  26. Múzquiz-Ramos EM, Cortés-Hernández D, Escobedo-Bocardo J, Zugasti-Cruz A, Ramírez-Gómez X, Osuna-Alarcón J. In vitro and in vivo biocompatibility of apatite-coated magnetite nanoparticles for cancer therapy. J Mater Sci Mater Med. 2013;24(4):1035–41.

    Article  Google Scholar 

  27. Muzquiz-Ramos E, Cortes-Hernandez D, Escobedo-Bocardo J, Zugasti-Cruz A. In vitro bonelike apatite formation on magnetite nanoparticles after a calcium silicate treatment: preparation, characterization and hemolysis studies. Ceram Int. 2012;38(8):6849–56.

    Article  Google Scholar 

  28. Martinez A, Izquierdo-Barba I, Vallet-Regi M. Bioactivity of a CaO-SiO2 binary glasses system. Chem Mater. 2000;12(10):3080–8.

    Article  Google Scholar 

  29. F756-00 A. Standard practice for assessment of hemolytic properties of materials. West Conshohocken: ASTM International West Conshohocken; 2000.

    Google Scholar 

  30. Sánchez HJ. Síntesis de materiales magnéticos por sol–gel a partir de precursores de Fe y Ga para aplicaciones en hipertermia CINVESTAV Unidad-Saltillo; 2012.

  31. Múzquiz-Ramos E, Cortés-Hernández DA, Sánchez-Torres C, Escobedo-Bocardo JC, Zugasti A, Ramírez-Gómez X. Biomimetic magnetic nanoparticles for hyperthermia treatment. Key Eng Mater. 2012;493:16–9.

    Google Scholar 

  32. Brusentsov NA, Gogosov V, Brusentsova T, Sergeev A, Jurchenko N, Kuznetsov AA, et al. Evaluation of ferromagnetic fluids and suspensions for the site-specific radiofrequency-induced hyperthermia of MX11 sarcoma cells in vitro. J Magn Magn Mater. 2001;225(1):113–7.

    Article  Google Scholar 

  33. Gkanas EI. In vitro magnetic hyperthermia response of iron oxide MNP’s incorporated in DA3, MCF-7 and HeLa cancer cell lines. Cent Eur J Chem. 2013;11(7):1042–54.

    Article  Google Scholar 

  34. Ginebra Molins MP. Desarrollo y caracterización de un cemento óseo basado en fosfato tricácico para aplicaciones quirúrgicas. Universitat Politècnica de Catalunya; 1997.

  35. Múzquiz-Ramos EM, Cortés-Hernández DA, Escobedo-Bocardo J. Biomimetic apatite coating on magnetite particles. Mater Lett. 2010;64(9):1117–9.

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge CONACYT, México for the provision of the Héctor Javier Sánchez Fuentes scholarship and SEP-CONACYT (Basic Science project, 127815) and Goval Industrial, S.A. de C.V. for the financial support for this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Sánchez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sánchez, J., Cortés-Hernández, D.A., Escobedo-Bocardo, J.C. et al. Bioactive magnetic nanoparticles of Fe–Ga synthesized by sol–gel for their potential use in hyperthermia treatment. J Mater Sci: Mater Med 25, 2237–2242 (2014). https://doi.org/10.1007/s10856-014-5197-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-014-5197-1

Keywords

Navigation