Skip to main content

Advertisement

Log in

Evaluation of various silver-containing dressing on infected excision wound healing study

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Silver-containing dressings have been widely used for controlling wound infection. However, the relationship between different concentrations of silver in dressings and their antimicrobial activities and wound-healing efficacies remains unclear. In the present study, we (in cooperation with Bio-medical Carbon Technology) investigated various silver-containing activated carbon fibers to understand the effects of different silver concentrations on the efficacies of a silver containing dressing. Our results indicated that various silver-containing activated carbon fibers exhibited good antibacterial effects and biocompatibility in terms of cell viability and that silver concentration showed a minor influence on cell growth. The infected excision wound model indicated that compared to silver-containing activated carbon fiber and other commercial silver-containing dressings assisted wound healing by promoting granulation and collagen deposition. Meanwhile, the silver ion can only be restrained in epidermis by intact skin. During application on the wound area, a temporary increase of serum silver can be detected, but this elevated serum silver level decreased to a subtle level after the removal of silver-containing activated carbon fiber.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Poole MD. Are we facing the end of the antibiotic era? Ear Nose Throat J. 1993;72:433.

    Google Scholar 

  2. Baron EJ, Tenover FC. Methicillin-resistant Staphylococcus aureus diagnostics: state of the art. Expert Opin Med Diagn. 2012;6:585–92.

    Article  Google Scholar 

  3. Martins A, Hunyadi A, Amaral L. Mechanisms of resistance in bacteria: an evolutionary approach. Open Microbiol J. 2013;7:53–8.

    Article  Google Scholar 

  4. Aziz Z, Abu SF, Chong NJ. A systematic review of silver-containing dressings and topical silver agents (used with dressings) for burn wounds. Burns. 2012;38:307–18.

    Article  Google Scholar 

  5. Singh M, Singh S, Prasad S, Gambhir IS. Nanotechnology in medicine and antibacterial effect of silver nanoparticles. Dig J Nanomater Bios. 2008;3:115–22.

    Google Scholar 

  6. Madhumathi K, Sudheesh Kumar PT, Abhilash S, Sreeja V, Tamura H, Manzoor K, Nair SV, Jayakumar R. Development of novel chitin/nanosilver composite scaffolds for wound dressing applications. J Mater Sci Mater Med. 2010;21:807–13.

    Article  Google Scholar 

  7. Gaisford S, Beezer AE, Bishop AH, Walker M, Parsons D. An in vitro method for the quantitative determination of the antimicrobial efficacy of silver-containing wound dressings. Int J Pharm. 2009;366:111–6.

    Article  Google Scholar 

  8. Wilkinson LJ, White RJ, Chipman JK. Silver and nanoparticles of silver in wound dressings: a review of efficacy and safety. J Wound Care. 2011;20:543–9.

    Google Scholar 

  9. Percival SL, Bowler PG, Russell D. Bacterial resistance to silver in wound care. J Hosp Infect. 2005;60:1–7.

    Article  Google Scholar 

  10. Ip M, Lui SL, Poon VK, Lung I, Burd A. Antimicrobial activities of silver dressings: an in vitro comparison. J Med Microbiol. 2006;55:59–63.

    Article  Google Scholar 

  11. Bolton L. Are silver products safe and effective for chronic wound management? J Wound Ostomy Continence Nurs. 2006;33:469–77.

    Article  Google Scholar 

  12. Williams C. Role of CarboFlex in the nursing management of wound odour. Br J Nurs. 2001;10:122–5.

    Google Scholar 

  13. Morris C. Wound odour: principles of management and the use of CliniSorb. Br J Nurs. 2008;17:S40–2.

    Google Scholar 

  14. Lee J, Kim J, Hyeon T. Recent progress in the synthesis of porous carbon caterials. Adv Mater. 2006;18:2073–94.

    Article  Google Scholar 

  15. Lin JH, Ko TH, Lin YH, Pan CK. Various treated conditions to prepare porous activated carbon fiber for application in supercapacitor electrodes. Energy Fuels. 2009;23:4668–77.

    Article  Google Scholar 

  16. Huang WY, Yeh CL, Lin JH, Yang JS, Ko TH, Lin YH. Development of fibroblast culture in three-dimensional activated carbon fiber-based scaffold for wound healing. J Mater Sci Mater Med. 2012;23:1465–78.

    Article  Google Scholar 

  17. Lin YH, Lin JH, Peng SF, Yeh CL, Chen WC, Chang TL, Liu MJ, Lai CH. Multifunctional gentamicin supplementation of poly(γ-glutamic acid)-based hydrogels for wound dressing application. J Appl Polym Sci. 2011;120:1057–68.

    Article  Google Scholar 

  18. Lipp C, Kirker K, Agostinho A, James G, Stewart P. Testing wound dressings using an in vitro wound model. J Wound Care. 2010;19:220–6.

    Google Scholar 

  19. Lin YH, Chiou SF, Lai CH, Tsai SC, Chou CW, Peng SF, He ZS. Formulation and evaluation of water-in-oil amoxicillin-loaded nanoemulsions using for Helicobacter pylori eradication. Process Biochem. 2012;47:1469–78.

    Article  Google Scholar 

  20. Chang CH, Huang WY, Lai CH, Hsu YM, Yao YH, Chen TY, Wu JY, Peng SF, Lin YH. Development of novel nanoparticles shelled with heparin for berberine delivery to treat Helicobacter pylor. Acta Biomater. 2011;7:593–603.

    Article  Google Scholar 

  21. Lin YH, Tsai SC, Lai CH, Lee CH, He ZS, Tseng GC. Genipin-cross-linked fucose-chitosan/heparin nanoparticles for the eradication of Helicobacter pylori. Biomaterials. 2013;34:4466–79.

    Article  Google Scholar 

  22. Lee WR, Park JH, Kim KH, Kim SJ, Park DH, Chae MH, Suh SH, Jeong SW, Park KK. The biological effects of topical alginate treatment in an animal model of skin wound healing. Wound Repair Regen. 2009;17:505–10.

    Article  Google Scholar 

  23. Balakrishnan B, Mohanty M, Fernandez AC, Mohanan PV, Jayakrishnan A. Evaluation of the effect of incorporation of dibutyryl cyclic adenosine monophosphate in an in situ-forming hydrogel wound dressing based on oxidized alginate and gelatin. Biomaterials. 2006;27:1355–61.

    Article  Google Scholar 

  24. Lansdown AB. A pharmacological and toxicological profile of silver as an antimicrobial agent in medical devices. Adv Pharmacol Sci. 2010;2010:910686.

    Google Scholar 

  25. Song X, Gunawan P, Jiang R, Leong SS, Wang K, Xu R. Surface activated carbon nanospheres for fast adsorption of silver ions from aqueous solutions. J Hazard Mater. 2011;194:162–8.

    Article  Google Scholar 

  26. Moreno-Piraján JC, Giraldo L. Heavy metal ions adsorption from wastewater using activated carbon from orange peel. E-J CHEM. 2012;9:926–37.

    Article  Google Scholar 

  27. Walker M, Cochrane CA, Bowler PG, Parsons D, Bradshaw P. Silver deposition and tissue staining associated with wound dressings containing silver. Ostomy Wound Manage. 2006;52:42–50.

    Google Scholar 

  28. Peel RG, Benedek A. Biodegradation and adsorption within activated carbon adsorbers. J Water Pollut Control. 1983;55:1168–73.

    Google Scholar 

  29. Suffet IH. National academy of sciences report–an evaluation of activated carbon for drinking water treatment. J Environ Pathol Toxicol Oncol. 1987;7:9–32.

    Google Scholar 

  30. Matsunaga T, Nakasono S, Kitajima Y, Horiguchi K. Electrochemical disinfection of bacteria in drinking water using activated carbon fibers. Biotechnol Bioeng. 1994;43:429–33.

    Article  Google Scholar 

  31. Poon VK, Burd A. In vitro cytotoxity of silver: implication for clinical wound care. Burns. 2004;30:140–7.

    Article  Google Scholar 

  32. Cho Lee AR, Leem H, Lee J, Park KC. Reversal of silver sulfadiazine-impaired wound healing by epidermal growth factor. Biomaterials. 2005;26:4670–6.

    Article  Google Scholar 

  33. Khundkar R, Malic C, Burge T. Use of Acticoat dressings in burns: what is the evidence? Burns. 2010;36:751–8.

    Article  Google Scholar 

  34. Muangman P, Chuntrasakul C, Silthram S, Suvanchote S, Benjathanung R, Kittidacha S, Rueksomtawin S. Comparison of efficacy of 1% silver sulfadiazine and Acticoat for treatment of partial-thickness burn wounds. J Med Assoc Thai. 2006;89:953–8.

    Google Scholar 

  35. Tian J, Wong KK, Ho CM, Lok CN, Yu WY, Che CM, Chiu JF, Tam PK. Topical delivery of silver nanoparticles promotes wound healing. ChemMedChem. 2007;2:129–36.

    Article  Google Scholar 

  36. Liu X, Lee PY, Ho CM, Lui VC, Chen Y, Che CM, Tam PK, Wong KK. Silver nanoparticles mediate differential responses in keratinocytes and fibroblasts during skin wound healing. ChemMedChem. 2010;5:468–75.

    Article  Google Scholar 

  37. Lin YH, Lin JH, Wang SH, Ko TH, Tseng GC. Evaluation of silver-containing activated carbon fiber for wound healing study: in vitro and in vivo. J Biomed Mater Res B Appl Biomater. 2012;100:2288–96.

    Article  Google Scholar 

  38. Frost RL, Cash GA, Kloprogge T. “Rocky mountain leather”, sepiolite and attapulgite-an infrared emission spectroscopic study. Vib Spectrosc. 1998;16:173–84.

    Article  Google Scholar 

  39. Toyokawa H, Matsui Y, Uhara J, Tsuchiya H, Teshima S, Nakanishi H, Kwon AH, Azuma Y, Nagaoka T, Ogawa T, Kamiyama Y. Promotive effects of far-infrared ray on full-thickness skin wound healing in rats. Exp Biol Med (Maywood). 2003;228:724–9.

    Google Scholar 

  40. Yu SY, Chiu JH, Yang SD, Hsu YC, Lui WY, Wu CW. Biological effect of far-infrared therapy on increasing skin microcirculation in rats. Photodermatol Photoimmunol Photomed. 2006;22:78–86.

    Article  Google Scholar 

  41. Lin CC, Liu XM, Peyton K, Wang H, Yang WC, Lin SJ, Durante W. Far infrared therapy inhibits vascular endothelial inflammation via the induction of heme oxygenase-1. Arterioscler Thromb Vasc Biol. 2008;28:739–45.

    Article  Google Scholar 

  42. Tu YP, Chen SC, Liu YH, Chen CF, Hour TC. Postconditioning with far-infrared irradiation increases heme oxygenase-1 expression and protects against ischemia/reperfusion injury in rat testis. Life Sci. 2013;92:35–41.

    Article  Google Scholar 

  43. Fuller FW, Parrish M, Nance FC. A review of the dosimetry of 1% silver sulfadiazine cream in burn wound treatment. J Burn Care Rehabil. 1994;15:213–23.

    Article  Google Scholar 

  44. Moiemen NS, Shale E, Drysdale KJ, Smith G, Wilson YT, Papini R. Acticoat dressings and major burns: systemic silver absorption. Burns. 2011;37:27–35.

    Article  Google Scholar 

  45. Gregus Z, Klaassen CD. Disposition of metals in rats: a comparative study of fecal, urinary, and biliary excretion and tissue distribution of eighteen metals. Toxicol Appl Pharmacol. 1986;85:24–38.

    Article  Google Scholar 

  46. Loeschner K, Hadrup N, Qvortrup K, Larsen A, Gao X, Vogel U, Mortensen A, Lam HR, Larsen EH. Distribution of silver in rats following 28 days of repeated oral exposure to silver nanoparticles or silver acetate. Part Fibre Toxicol. 2011;8. doi:10.1186/1743-8977-8-18.

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yu-Hsin Lin or Jui-Hsiang Lin.

Additional information

Jui-Hsiang Lin and Yu-Hsin Lin are contributed equally.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lin, YH., Hsu, WS., Chung, WY. et al. Evaluation of various silver-containing dressing on infected excision wound healing study. J Mater Sci: Mater Med 25, 1375–1386 (2014). https://doi.org/10.1007/s10856-014-5152-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-014-5152-1

Keywords

Navigation