Skip to main content
Log in

Bioactivity and cytotoxicity of glass and glass–ceramics based on the 3CaO·P2O5–SiO2–MgO system

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

The mechanical strength of bioactive glasses can be improved by controlled crystallization, turning its use as bulk bone implants viable. However, crystallization may affect the bioactivity of the material. The aim of this study was to develop glass–ceramics of the nominal composition (wt%) 52.75(3CaO·P2O5)–30SiO2–17.25MgO, with different crystallized fractions and to evaluate their in vitro cytotoxicity and bioactivity. Specimens were heat-treated at 700, 775 and 975 °C, for 4 h. The major crystalline phase identified was whitlockite, an Mg-substituted tricalcium phosphate. The evaluation of the cytotoxicity was carried out by the neutral red uptake methodology. Ionic exchanges with the simulated body fluid SBF-K9 acellular solution during the in vitro bioactivity tests highlight the differences in terms of chemical reactivity between the glass and the glass–ceramics. The effect of crystallinity on the rates of hydroxycarbonate apatite (HCA) formation was followed by Fourier transformed infrared spectroscopy. Although all glass–ceramics can be considered bioactive, the glass–ceramic heat-treated at 775 °C (V775-4) presented the most interesting result, because the onset for HCA formation is at about 24 h and after 7 days the HCA layer dominates completely the spectrum. This occurs probably due to the presence of the whitlockite phase (3(Ca,Mg)O·P2O5). All samples were considered not cytotoxic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Hölland W. Biocompatible and bioactive glass-ceramics—state of the art and new directions. J Non-Cryst Solids. 1997;219:192–7.

    Article  Google Scholar 

  2. Abo-Mosallam HA, Salama SN, Salman SM. Formulation and characterization of glass–ceramics based on Na2Ca2Si3O9–Ca5(PO4)3F–Mg2SiO4-system in relation to their biological activity. J Mater Sci Mater Med. 2009. doi:10.1007/s10856-009-3811-4.

    Google Scholar 

  3. Salman SM, Salama SN, Darwish H, Abo-Mosallam HA. In vitro bioactivity of glass–ceramics of the CaMgSi2O6–CaSiO3–Ca5(PO4)3F–Na2SiO3 system with TiO2 or ZnO additives. Ceram Int. 2009;35:1083–93.

    Article  CAS  Google Scholar 

  4. Hench LL, West JK. Biological application of bioactive glasses. Life Chem Rep. 1996;13:187–241.

    CAS  Google Scholar 

  5. Wanpeng C, Hench LL. Bioactive Materials. Ceram Int. 1996;22:493–507.

    Article  Google Scholar 

  6. Hoppe A, Güldal NS, Boccaccini AR. A review of the biological response to ionic dissolution products from bioactive glasses and glass-ceramics. Biomaterials. 2011;32:2757–74.

    Article  CAS  Google Scholar 

  7. Day RM. Bioactive glass stimulates the secretion of angiogenic growth factors and angiogenesis in vitro. Tissue Eng. 2005;11:768–77.

    Article  CAS  Google Scholar 

  8. Jell G, Stevens MM. Gene activation by bioactive glasses. J Mater Sci Mater Med. 2006;17:997–1002.

    Article  CAS  Google Scholar 

  9. Hench LL. Genetic design of bioactive glass. J Eur Ceram Soc. 2009;29:1257–65.

    Article  CAS  Google Scholar 

  10. Martins CH, Carvalho TC, Souza MGM, Ravagnani C, Peitl O, Zanotto ED, Panzeri H, Casemiro LA. Assessment of antimicrobial effect of Biosilicate® against anaerobic, microaerophilic and facultative anaerobic microorganisms. J Mater Sci Mater Med. 2011;22:1439–46.

    Article  CAS  Google Scholar 

  11. Rahaman MN, Day DE, Bal BS, Fu Q, Jung SB, Bonewald LF, Tomsia AP. Bioactive glass in tissue engineering. Acta Biomater. 2011;7:2355–73.

    Article  CAS  Google Scholar 

  12. Daguano JKMF, Santos C, Fernandes MHFV, Rogero SO, Strecker K. Effect of partial crystallization on the mechanical properties and cytotoxicity of bioactive glass from the 3CaO·P2O5–SiO2–MgO system. J Mech Behav Biomed Mater. 2012;14:78–88.

    Article  CAS  Google Scholar 

  13. Casa-Lillo MA, Velásquez P, De Aza PN. Influence of thermal treatment on the in vitro bioactivity of wollastonite materials. J Mater Sci Mater Med. 2011;22:907–15.

    Article  Google Scholar 

  14. Murphy S, Boyd D, Moane S, Bennett M. The effect of composition on ion release from Ca–Sr–Na–Zn–Si glass bone grafts. J Mater Sci Mater Med. 2009;20:2207–14.

    Article  CAS  Google Scholar 

  15. Tulyaganov DU, Agathopoulos S, Valerio P, Balamurugan A, Saranti A, Karakassides MA, Ferreira JMF. Synthesis, bioactivity and preliminary biocompatibility studies of glasses in the system CaO–MgO–SiO2–Na2O–P2O5–CaF2. J Mater Sci Mater Med. 2011. doi:10.1007/s10856-010-4203-5.

    Google Scholar 

  16. Peitl O, LaTorre GP, Hench LL. Effect of crystallization on apatite-layer formation of bioactive glass 45S5. J Biomed Mater Res. 1996;30:509–14.

    Article  Google Scholar 

  17. Clupper DC, Hench LL, Mecholsky JJ. Strength and toughness of tape cast bioactive glass 45S5 following heat-treatment. J Eur Ceram Soc. 2004;24:2929–34.

    Article  CAS  Google Scholar 

  18. Kanchanarat N, Bandyopadhyay-Ghosh S, Reaney IM, Brook IM, Hatton PV. Microstructure and mechanical properties of fluorcanasite glass-ceramics for biomedical applications. J Mater Sci. 2008;43:759–65.

    Article  CAS  Google Scholar 

  19. Liporaci JLJ, Rosa AL, Beloti MM, Johnson A, Noort R, Barros VMR. In vitro osteogenesis on fluorcanasite glass-ceramic with three different chemical compositions. J Mater Sci Mater Med. 2008;19:833–8.

    Article  CAS  Google Scholar 

  20. Bhakta S, Pattanayak DK, Takadama H, Kokubo T, Miller CA, Mirsaneh M, Reaney IM, Brook I, Noort R, Hatton PV. Prediction of osteoconductive activity of modified potassium fluorrichterite glass-ceramics by immersion in simulated body fluid. J Mater Sci Mater Med. 2010. doi:10.1007/s10856-010-4145-y.

    Google Scholar 

  21. Kokubo T. Bioactive glass-ceramics: properties and applications. Biomaterials. 1991;12:155–63.

    Article  CAS  Google Scholar 

  22. Li P, Yang Q, Zhang F. The effect of residual glassy phase in a bioactive glass-ceramic on the formation of its surface apatite layer in vitro. J Mater Sci Mater Med. 1992. doi:10.1007/BF00701242.

    Google Scholar 

  23. Arstila H, Vedel E, Hupa L, Hupa M. Factors affecting crystallization of bioactive glasses. J Eur Ceram Soc. 2007;27:1543.

    Article  CAS  Google Scholar 

  24. Kannan S, Goetz-Neunhoeffer F, Neubauer J, Pina S, Torres PMC, Ferreira JMF. Synthesis and structural characterization of strontium-and magnesium-co-substituted β-tricalcium phosphate. Acta Biomater. 2010;6:571–6.

    Article  CAS  Google Scholar 

  25. Kokubo T, Ito S, Sakka S, Yamamuro T. Formation of a high-strength bioactive glass-ceramic in the system MgO–CaO–SiO2–P2O5. J Mater Sci. 1986;21:536–40.

    Article  CAS  Google Scholar 

  26. Holand W, Vogel W. Machinable and phosphate glass ceramics. In: Hench LL, Wilson J, editors. An Introduction to Bioceramics. Singapore: World Scientific; 1993. p. 125–37.

    Chapter  Google Scholar 

  27. Peitl Filho O, Hench LL, La Torre G, Zanotto ED. Bioactive ceramics and method of preparing bioactive ceramics. US5981412; Nov. 1999.

  28. Matsumoto MA, Caviquioli G, Biguetti CC, Holgado LA, Saraiva PP, Rennó AAM, Kawakami RY. A novel bioactive vitroceramic presents similar biological responses as autogenous bone grafts. J Mater Sci Mater Med. 2012. doi:10.1007/s10856-012-4612-8.

    Google Scholar 

  29. Daguano JKMF, Suzuki PA, Strecker K, Fernandes MHFV, Santos C. Evaluation of the micro-hardness and fracture toughness of amorphous and partially crystallized 3CaO·P2O5–SiO2–MgO bioglasses. Mater Sci Eng, A. 2012;533:26–32.

    Article  CAS  Google Scholar 

  30. Kokubo T, Takadama H. How useful is SBF in predicting in vivo bone bioactivity? Biomaterials. 2006;27:2907–15.

    Article  CAS  Google Scholar 

  31. Oliveira JM, Correia RN, Fernandes MH. Effects of Si speciation on the in vitro bioactivity of glasses. Biomaterials. 2002;23:371–9.

    Article  CAS  Google Scholar 

  32. Saboori A, Rabiee M, Moztarzadeh F, Sheikhi M, Tahriri M, Karimi M. Synthesis, characterization and in vitro bioactivity of sol-gel-derived SiO2–CaO–P2O5–MgO bioglass. Mater Sci Eng C. 2009;29:335–40.

    Article  CAS  Google Scholar 

  33. Krimm S, Tobolsky AV. Quantitative x-ray studies of order in amorphous and crystalline polymers. Quantitative x-ray determination of crystallinity in polyethylene. J Polym Sci. 1951;7:57–76.

    Article  CAS  Google Scholar 

  34. ISO DOCUMENT 23317. Implants for surgery: in vitro evaluation for apatite-forming ability of implant materials, 2007.

  35. ISO DOCUMENT 10993-5. Biological evaluation of medical devices, Part 5, Tests for cytotoxicity: in vitro methods, 1992.

  36. Holand W, Beall GH. Glass–ceramic technology. New York: Wiley-Blackwell; 2002.

    Google Scholar 

  37. Hench LL, Andersson O. Bioactive glasses. In: Hench LL, Wilson J, editors. An introduction to bioceramics. Advanced series in ceramics. Singapore: World Scientific; 1993. p. 41–62.

  38. Filgueiras MR, La Torre G, Hench LL. Solution effects on the surface reactions of a bioactive glass. J Biomed Mater Res. 1993;27:445–53.

    Article  CAS  Google Scholar 

  39. Peitl O, Zanotto ED, Hench LL. Highly bioactive P2O5–NaO–CaO–SiO2 glass-ceramics. J Non-Cryst Solids. 2001;292:115–26.

    Article  CAS  Google Scholar 

  40. Bohner M, Lemaitre J. Can bioactivity be tested in vitro with SBF solution? Biomaterials. 2009;30:2175–9.

    Article  CAS  Google Scholar 

  41. Salman SM, Salama SN, Abo-Mosallam HA. The role of strontium and potassium on crystallization and bioactivity of Na2O–CaO–P2O5–SiO2 glasses. Ceram Int. 2012;38:55–63.

    Article  CAS  Google Scholar 

  42. Kivrak N, Tas AC. Synthesis of calcium hydroxyapatite-tricalcium phosphate composite bioceramic powders and their sintering behavior. J Am Ceram Soc. 1998;81:2245.

    Article  CAS  Google Scholar 

  43. Kamitakahara M, Ohtsuki C, Kozaka Y, Ogata S, Tanihara M, Miyazaki T. Preparation of porous glass–ceramics containing Whitlockite and diopside for bone repair. J Ceram Soc Jpn. 2006;114(1):82–6.

    Article  CAS  Google Scholar 

  44. El-Meliegy EM, El-Bassyouni GT. Study of the bioactivity of fluorophlogopite–whitlockite ceramics. Ceram Int. 2008;34:1527–32.

    Article  CAS  Google Scholar 

  45. Banerjee SS, Tarafder S, Davies NM, Bandyopadhyay A, Bose S. Understanding the influence of MgO and SrO binary doping on the mechanical and biological properties of β-TCP ceramics. Acta Biomater. 2010;6:4167–74.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge Prof. Dr. Edgar Dutra Zanotto for technical support, and FAPESP for financial support, under Grants Nos. 07/50510-4 and 2013/07793-6. Also we give our thanks to Clever R. Chinaglia and Bruno P. Rodrigues for the help provided during the development of the present work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juliana K. M. F. Daguano.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Daguano, J.K.M.F., Rogero, S.O., Crovace, M.C. et al. Bioactivity and cytotoxicity of glass and glass–ceramics based on the 3CaO·P2O5–SiO2–MgO system. J Mater Sci: Mater Med 24, 2171–2180 (2013). https://doi.org/10.1007/s10856-013-4972-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-013-4972-8

Keywords

Navigation