Skip to main content

Advertisement

Log in

PolyNaSS grafting on titanium surfaces enhances osteoblast differentiation and inhibits Staphylococcus aureus adhesion

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Titanium surface modifications to simultaneously prevent bacterial adhesion but promote bone-cell functions could be highly beneficial for improving implant osseointegration. In the present in vitro study, the effect of sulfonate groups on titanium surfaces was investigated with respect to both S. aureus adhesion and osteoblast functions pertinent to new bone formation. Commercial pure titanium (cpTi) squares were oxydized (Tiox), grafted with poly(sodium styrene sulfonate) groups (Tigraft) by covalent bonding using radical polymerization, and were characterized by infrared spectroscopy (HATR-FTIR) and colorimetry. Bacterial adhesion study showed that Tigraft exhibited high inhibition of S. aureus adhesion S at levels >90 %, when compared to cpTi (P < 0.05). In contrast osteoblasts adhesion was similar on all three titanium surfaces. While the kinetics of cell proliferation were similar on the three titanium surfaces, Alkaline phosphatase-specific activity of osteoblasts cultured on Tigraft surfaces was twofold higher than that observed on either on Tiox or cpTi surfaces (P < 0.01). More importantly, the amount and the distribution of calcium-containing nodules was different. The total area covered by calcium-containing nodules was 2.2-fold higher on the Tigraft as compared to either Tiox or cpTi surfaces (P < 0.01). These results provide evidence that poly(sodium styrene sulfonate) groups grafting on cpTi simultaneously inhibits bacteria adhesion but promote osteoblast function pertinent to new bone formation. Such modified titanium surfaces offer a promising strategy for preventing biofilm-related infections and enhancing osteointegration of implants in orthopaedic and dental applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Le Guéhennec L, Soueidan A, Layrolle P, Amouriq Y. Surface treatments of titanium dental implants for rapid osseointegration. Dent Mater. 2007;23(7):844–54.

    Article  Google Scholar 

  2. Puleo DA, Nanci A. Understanding and controlling the bone-implant interface. Biomaterials. 1999;20(23–24):2311–21.

    Article  CAS  Google Scholar 

  3. Bachle M, Kohal RJ. A systematic review of the influence of different titanium surfaces on proliferation, differentiation and protein synthesis of osteoblast-like MG63 cells. Clin Oral Implants Res. 2004;15(6):683–92.

    Article  Google Scholar 

  4. Meyer U, Buchter A, Wiesmann HP, Joos U, Jones DB. Basic reactions of osteoblasts on structured material surfaces. Eur Cell Mater. 2005;9:39–49.

    CAS  Google Scholar 

  5. Zitzmann NU, Berglundh T. Definition and prevalence of peri-implant diseases. J Clin Periodontol. 2008;35(8 Suppl):286–91.

    Article  Google Scholar 

  6. Darouiche RO. Treatment of infections associated with surgical implants. N Engl J Med. 2004;350(14):1422–9.

    Article  CAS  Google Scholar 

  7. Sia IG, Berbari EF, Karchmer AW. Prosthetic joint infections. Infect Dis Clin North Am. 2005;19(4):885–914.

    Article  Google Scholar 

  8. Harris LG, Tosatti S, Wieland M, Textor M, Richards RG. Staphylococcus aureus adhesion to titanium oxide surfaces coated with non-functionalized and peptide-functionalized poly(l-lysine)-grafted-poly(ethylene glycol) copolymers. Biomaterials. 2004;25(18):4135–48.

    Article  CAS  Google Scholar 

  9. Harris LG, Richards RG. Staphylococci and implant surfaces: a review. Injury. 2006;37(Suppl 2):S3–14.

    Article  Google Scholar 

  10. Leonhardt A, Bergström C, Lekholm U. Microbiologic diagnostics at titanium implants. Clin Implant Dent Relat Res. 2003;5(4):226–32.

    Article  Google Scholar 

  11. Zhao L, Chu PK, Zhang Y, Wu Z. Antibacterial coatings on titanium implants. J Biomed Mater Res B Appl Biomater. 2009;91(1):470–80.

    Google Scholar 

  12. Antoci V Jr, King SB, Jose B, Parvizi J, Zeiger AR, Wickstrom E, Freeman TA, Composto RJ, Ducheyne P, Shapiro IM, et al. Vancomycin covalently bonded to titanium alloy prevents bacterial colonization. J Orthop Res. 2007;25(7):858–66.

    Article  CAS  Google Scholar 

  13. Radin S, Ducheyne P. Controlled release of vancomycin from thin sol-gel films on titanium alloy fracture plate material. Biomaterials. 2007;28(9):1721–9.

    Article  CAS  Google Scholar 

  14. Popat KC, Eltgroth M, Latempa TJ, Grimes CA, Desai TA. Decreased Staphylococcus epidermis adhesion and increased osteoblast functionality on antibiotic-loaded titania nanotubes. Biomaterials. 2007;28(32):4880–8.

    Article  CAS  Google Scholar 

  15. Campoccia D, Montanaro L, Speziale P, Arciola CR. Antibiotic-loaded biomaterials and the risks for the spread of antibiotic resistance following their prophylactic and therapeutic clinical use. Biomaterials. 2010;31(25):6363–77.

    Article  CAS  Google Scholar 

  16. Norowski PA Jr, Bumgardner JD. Biomaterial and antibiotic strategies for peri-implantitis: a review. J Biomed Mater Res B Appl Biomater. 2009;88(2):530–43.

    Google Scholar 

  17. Wan T, Aoki H, Hikawa J, Lee JH. RF-magnetron sputtering technique for producing hydroxyapatite coating film on various substrates. Biomed Mater Eng. 2007;17(5):291–7.

    CAS  Google Scholar 

  18. Yoshinari M, Oda Y, Kato T, Okuda K, Hirayama A. Influence of surface modifications to titanium on oral bacterial adhesion in vitro. J Biomed Mater Res. 2000;52(2):388–94.

    Article  CAS  Google Scholar 

  19. Cen L, Neoh KG, Kang ET. Antibacterial activity of cloth functionalized with N-alkylated poly(4-vinylpyridine). J Biomed Mater Res A. 2004;71(1):70–80.

    Article  CAS  Google Scholar 

  20. Tiller JC, Liao CJ, Lewis K, Klibanov AM. Designing surfaces that kill bacteria on contact. Proc Natl Acad Sci USA. 2001;98(11):5981–5.

    Article  CAS  Google Scholar 

  21. Chua PH, Neoh KG, Kang ET, Wang W. Surface functionalization of titanium with hyaluronic acid/chitosan polyelectrolyte multilayers and RGD for promoting osteoblast functions and inhibiting bacterial adhesion. Biomaterials. 2008;29(10):1412–21.

    Article  CAS  Google Scholar 

  22. Maddikeri RR, Tosatti S, Schuler M, Chessari S, Textor M, Richards RG, Harris LG. Reduced medical infection related bacterial strains adhesion on bioactive RGD modified titanium surfaces: a first step toward cell selective surfaces. J Biomed Mater Res A. 2008;84(2):425–35.

    CAS  Google Scholar 

  23. El Khadali F, Helary G, Pavon-Djavid G, Migonney V. Modulating fibroblast cell proliferation with functionalized poly(methyl methacrylate) based copolymers: chemical composition and monomer distribution effect. Biomacromolecules. 2002;3(1):51–6.

    Article  Google Scholar 

  24. Latz C, Pavon-Djavid G, Helary G, Evans M, Migonney V. Alternative intracellular signaling mechanism involved in the inhibitory biological response of functionalized PMMA-based polymers. Biomacromolecules. 2003;4(3):766–71.

    Article  CAS  Google Scholar 

  25. Delmi M, Vaudaux P, Lew DP, Vasey H. Role of fibronectin in staphylococcal adhesion to metallic surfaces used as models of orthopaedic devices. J Orthop Res. 1994;12(3):432–8.

    Article  CAS  Google Scholar 

  26. Anagnostou F, Debet A, Pavon-Djavid G, Goudaby Z, Helary G, Migonney V. Osteoblast functions on functionalized PMMA-based polymers exhibiting Staphylococcus aureus adhesion inhibition. Biomaterials. 2006;27(21):3912–9.

    Article  CAS  Google Scholar 

  27. Berlot S, Aissaoui Z, Pavon-Djavid G, Belleney J, Jozefowicz M, Helary G, Migonney V. Biomimetic poly(methyl methacrylate)-based terpolymers: modulation of bacterial adhesion effect. Biomacromolecules. 2002;3(1):63–8.

    Article  CAS  Google Scholar 

  28. Crémieux A, Pavon-Djavid G, Saleh Mghir A, Hélary G, Migonney V. Bioactive polymers grafted on silicone to prevent Staphylococcus aureus prosthesis adherence: in vitro and in vivo studies. JABBS. 2003;1:178–85.

    Google Scholar 

  29. Helary G, Noirclere F, Mayingi J, Migonney V. A new approach to graft bioactive polymer on titanium implants: improvement of MG 63 cell differentiation onto this coating. Acta Biomater. 2009;5(1):124–33.

    Article  CAS  Google Scholar 

  30. Zhou J, Pavon-Djavid G, Anagnostou F, Migonney V. Inhibition de l’adherence de Porphyromonas gingivalis sur la surface de titane greffe de poly(styrene sulfonate de sodium). ITBM-RBM. 2007;28(1):42–8.

    Google Scholar 

  31. Anagnostou F, Plas C, Forest N. Ecto-alkaline phosphatase considered as levamisole-sensitive phosphohydrolase at physiological pH range during mineralization in cultured fetal calvaria cells. J Cell Biochem. 1996;60(4):484–94.

    Article  CAS  Google Scholar 

  32. Bowers GN Jr, McComb RB. A continuous spectrophotometric method for measuring the activity of serum alkaline phosphatase. Clin Chem. 1966;12(2):70–89.

    CAS  Google Scholar 

  33. Smith PK, Krohn RI, Hermanson GT, Mallia AK, Gartner FH, Provenzano MD, Fujimoto EK, Goeke NM, Olson BJ, Klenk DC. Measurement of protein using bicinchoninic acid. Anal Biochem. 1985;150(1):76–85.

    Article  CAS  Google Scholar 

  34. Goto T, Kajiwara H, Yoshinari M, Fukuhara E, Kobayashi S, Tanaka T. In vitro assay of mineralized-tissue formation on titanium using fluorescent staining with calcein blue. Biomaterials. 2003;24(22):3885–92.

    Article  CAS  Google Scholar 

  35. Li B, Liu X, Cao C, Ding C. Biocompatibility and antibacterial activity of plasma sprayed titania coating grafting collagen and gentamicin. J Biomed Mater Res A. 2007;83(4):923–30.

    Google Scholar 

  36. Hu X, Neoh KG, Shi Z, Kang ET, Poh C, Wang W. An in vitro assessment of titanium functionalized with polysaccharides conjugated with vascular endothelial growth factor for enhanced osseointegration and inhibition of bacterial adhesion. Biomaterials. 2010;31(34):8854–63.

    Article  CAS  Google Scholar 

  37. Kerner S, Migonney V, Pavon-Djavid G, Helary G, Sedel L, Anagnostou F. Bone tissue response to titanium implant surfaces modified with carboxylate and sulfonate groups. J Mater Sci Mater Med. 2010;21(2):707–15.

    Article  CAS  Google Scholar 

  38. Rohde H, Burandt EC, Siemssen N, Frommelt L, Burdelski C, Wurster S, Scherpe S, Davies AP, Harris LG, Horstkotte MA, et al. Polysaccharide intercellular adhesin or protein factors in biofilm accumulation of Staphylococcus epidermidis and Staphylococcus aureus isolated from prosthetic hip and knee joint infections. Biomaterials. 2007;28(9):1711–20.

    Article  CAS  Google Scholar 

  39. Speziale P, Visai L, Rindi S, Pietrocola G, Provenza G, Provenzano M. Prevention and treatment of Staphylococcus biofilms. Curr Med Chem. 2008;15(30):3185–95.

    Article  CAS  Google Scholar 

  40. Quirynen M, Bollen C. The influence of surface roughness and surface-free energy on supra- and subgingival plaque formation in man. A review of the literature. Review. J Clin Periodontol. 1995;22(1):1–14.

    Article  CAS  Google Scholar 

  41. Cunliffe D, Smart CA, Alexander C, Vulfson EN. Bacterial adhesion at synthetic surfaces. Appl Environ Microbiol. 1999;65(11):4995–5002.

    CAS  Google Scholar 

  42. Schildhauer TA, Robie B, Muhr G, Koller M. Bacterial adherence to tantalum versus commonly used orthopedic metallic implant materials. J Orthop Trauma. 2006;20(7):476–84.

    Article  Google Scholar 

  43. Soininen A, Levon J, Katsikogianni M, Myllymaa K, Lappalainen R, Konttinen YT, Kinnari TJ, Tiainen VM, Missirlis Y. In vitro adhesion of staphylococci to diamond-like carbon polymer hybrids under dynamic flow conditions. J Mater Sci Mater Med. 2011;22(3):629–36.

    Article  CAS  Google Scholar 

  44. Kowalczynska HM, Nowak-Wyrzykowska M. Modulation of adhesion, spreading and cytoskeleton organization of 3T3 fibroblasts by sulfonic groups present on polymer surfaces. Cell Biol Int. 2003;27(2):101–14.

    Article  CAS  Google Scholar 

  45. Liu Y, Yang SF, Li Y, Xu H, Qin L, Tay JH. The influence of cell and substratum surface hydrophobicities on microbial attachment. J Biotechnol. 2004;110(3):251–6.

    Article  CAS  Google Scholar 

  46. Najab-Benhayoun M, Serne H, Jozefowicz M, Fischer AM, Brisson C, Sultan Y. Human umbilical vein endothelial cell culture on heparin-like microcarriers. J Biomed Mater Res. 1993;27(4):511–20.

    Article  CAS  Google Scholar 

  47. Bagno A, Di Bello C. Surface treatments and roughness properties of Ti-based biomaterials. J Mater Sci Mater Med. 2004;15(9):935–49.

    Article  CAS  Google Scholar 

  48. Evans MD, Pavon-Djavid G, Helary G, Legeais JM, Migonney V. Vitronectin is significant in the adhesion of lens epithelial cells to PMMA polymers. J Biomed Mater Res A. 2004;69(3):469–76.

    Article  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the help of Prof Rena Bizios for critical review of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Anagnostou.

Additional information

V. Migonney and F. Anagnostou both authors contributed equally to this work

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alcheikh, A., Pavon-Djavid, G., Helary, G. et al. PolyNaSS grafting on titanium surfaces enhances osteoblast differentiation and inhibits Staphylococcus aureus adhesion. J Mater Sci: Mater Med 24, 1745–1754 (2013). https://doi.org/10.1007/s10856-013-4932-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-013-4932-3

Keywords

Navigation