Skip to main content
Log in

Surface modification of fiber reinforced polymer composites and their attachment to bone simulating material

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

The purpose of this study was to investigate the effect of fiber orientation of a fiber-reinforced composite (FRC) made of poly-methyl-methacrylate (PMMA) and E-glass to the surface fabrication process by solvent dissolution. Intention of the dissolution process was to expose the fibers and create a macroporous surface onto the FRC to enhance bone bonding of the material. The effect of dissolution and fiber direction to the bone bonding capability of the FRC material was also tested. Three groups of FRC specimens (n = 18/group) were made of PMMA and E-glass fiber reinforcement: (a) group with continuous fibers parallel to the surface of the specimen, (b) continuous fibers oriented perpendicularly to the surface, (c) randomly oriented short (discontinuous) fibers. Fourth specimen group (n = 18) made of plain PMMA served as controls. The specimens were subjected to a solvent treatment by tetrahydrofuran (THF) of either 5, 15 or 30 min of time (n = 6/time point), and the advancement of the dissolution (front) was measured. The solvent treatment also exposed the fibers and created a surface roughness on to the specimens. The solvent treated specimens were embedded into plaster of Paris to simulate bone bonding by mechanical locking and a pull-out test was undertaken to determine the strength of the attachment. All the FRC specimens dissolved as function of time, as the control group showed no marked dissolution during the study period. The specimens with fibers along the direction of long axis of specimen began to dissolve significantly faster than specimens in other groups, but the test specimens with randomly oriented short fibers showed the greatest depth of dissolution after 30 min. The pull-out test showed that the PMMA specimens with fibers were retained better by the plaster of Paris than specimens without fibers. However, direction of the fibers considerably influenced the force of attachment. The fiber reinforcement increases significantly the dissolution speed, and the orientation of the glass fibers has great effect on the dissolving depth of the polymer matrix of the composite, and thus on the exposure of fibers. The glass fibers exposed by the solvent treatment enhanced effectively the attachment of the specimen to the bone modeling material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Kaufmann TJ, Jensen ME, Ford G, et al. Cardiovascular effects of polymethylmethacrylate use in percutaneous vertebroplasty. Am J Neuroradiol. 2002;23(4):601–4.

    Google Scholar 

  2. Lieberman IH, Togawa D, Kayanja MM. Vertebroplasty and kyphoplasty: filler materials. Spine J. 2005;5(6, Supplement):S305–16.

    Article  Google Scholar 

  3. Gomaa A, Lee RM, Liu CS. Polypseudophakia for cataract surgery: 10-year follow-up on safety and stability of two poly-methyl-methacrylate (PMMA) intraocular lenses within the capsular bag. Eye (Lond). 2011;25(8):1090–3.

    Article  CAS  Google Scholar 

  4. Becker LC, Bergfeld WF, Belsito DV, et al. Final report of the cosmetic ingredient review expert panel safety assessment of polymethyl methacrylate (PMMA), methyl methacrylate crosspolymer, and methyl methacrylate/glycol dimethacrylate crosspolymer. Int J Toxicol. 2011;30(3 Suppl):54S–65S.

    Article  CAS  Google Scholar 

  5. Väkiparta M, Yli-urpo A, Vallittu PK. Flexural properties of glass fiber reinforced composite with multiphase biopolymer matrix. J Mater Sci Mater Med. 2004;15(1):7–11.

    Article  Google Scholar 

  6. Mattila RH, Lassila LVJ, Vallittu PK. Production and structural characterisation of porous fibre-reinforced composite. Compos A Appl Sci Manuf. 2004;35(6):631–6.

    Article  Google Scholar 

  7. Dyer SR, Lassila LV, Jokinen M, et al. Effect of cross-sectional design on the modulus of elasticity and toughness of fiber-reinforced composite materials. J Prosthet Dent. 2005;94(3):219–26.

    Article  CAS  Google Scholar 

  8. Zhao DS, Moritz N, Laurila P, et al. Development of a multi-component fiber-reinforced composite implant for load-sharing conditions. Med Eng Phys. 2009;31(4):461–9.

    Article  CAS  Google Scholar 

  9. Chan C-M, Ko T-M, Hiraoka H. Polymer surface modification by plasmas and photons. Surf Sci Rep. 1996;24(1–2):1–54.

    Article  CAS  Google Scholar 

  10. Chen J, Zhuang H, Zhao J, et al. Solvent effects on polymer surface structure. Surf Interface Anal. 2001;31(8):713–20.

    Article  CAS  Google Scholar 

  11. Goddard JM, Hotchkiss JH. Polymer surface modification for the attachment of bioactive compounds. Prog Polym Sci. 2007;32(7):698–725.

    Article  CAS  Google Scholar 

  12. Chu PK, Chen JY, Wang LP, et al. Plasma-surface modification of biomaterials. Mater Sci Eng R Rep. 2002;36(5–6):143–206.

    Article  Google Scholar 

  13. Mendonça G, Mendonça DBS, Aragão FJL, et al. Advancing dental implant surface technology—from micron–to nanotopography. Biomaterials. 2008;29(28):3822–35.

    Article  Google Scholar 

  14. Mattila RH. Fibre-reinforced composite implant: in vitro mechanical interlocking with bone model material and residual monomer analysis. J Mater Sci. 2006;41(13):4321.

    Article  CAS  Google Scholar 

  15. Puska MA, Narhi TO, Aho AJ, et al. Flexural properties of crosslinked and oligomer-modified glass-fibre reinforced acrylic bone cement. J Mater Sci Mater Med. 2004;15(9):1037–43.

    Article  CAS  Google Scholar 

  16. Puska MA, Lassila LV, Närhi TO, et al. Improvement of mechanical properties of oligomer-modified acrylic bone cement with glass-fibers. Appl Compos Mater. 2004;11(1):17–31.

    Article  CAS  Google Scholar 

  17. Hautamäki MP, Aho AJ, Alander P, et al. Repair of bone segment defects with surface porous fiber-reinforced polymethyl methacrylate (PMMA) composite prosthesis: histomorphometric incorporation model and characterization by SEM. Acta Orthop. 2008;79(4):555–64.

    Article  Google Scholar 

  18. Aho AJ, Hautamäki M, Mattila R, et al. Surface porous fibre-reinforced composite bulk bone substitute. Cell Tissue Banking. 2004;5(4):213–21.

    Article  CAS  Google Scholar 

  19. Mattila RH, Laurila P, Rekola J, et al. Bone attachment to glass-fibre-reinforced composite implant with porous surface. Acta Biomater. 2009;5(5):1639–46.

    Article  CAS  Google Scholar 

  20. Vallittu PK. Curing of a silane coupling agent and its effect on the transverse strength of autopolymerizing polymethylmethacrylate-glass fibre composite. J Oral Rehabil. 1997;24(2):124–30.

    Article  CAS  Google Scholar 

  21. Nganga S, Ylä-Soininmäki A, Lassila LVJ, et al. Interface shear strength and fracture behaviour of porous glass-fibre-reinforced composite implant and bone model material. J Mech Behav Biomed Mater. 2011;4(8):1797–804.

    Article  CAS  Google Scholar 

  22. Ballo AM, Lassila LV, Vallittu PK, et al. Load bearing capacity of bone anchored fiber-reinforced composite device. J Mater Sci Mater Med. 2007;18(10):2025–31.

    Article  CAS  Google Scholar 

  23. Horowitz S, Doty S, Lane J, et al. Studies of the mechanism by which the mechanical failure of polymethylmethacrylate leads to bone resorption. J Bone Joint Surg Am. 1993;75(6):802–13.

    CAS  Google Scholar 

  24. Vallittu PK. Peak temperatures of some prosthetic acrylates on polymerization. J Oral Rehabil. 1996;23(11):776–81.

    Article  CAS  Google Scholar 

  25. Revell PA, Braden M, Freeman MAR. Review of the biological response to a novel bone cement containing poly(ethyl methacrylate) and n-butyl methacrylate. Biomaterials. 1998;19(17):1579–86.

    Article  CAS  Google Scholar 

  26. Lu JX, Huang ZW, Tropiano P, et al. Human biological reactions at the interface between bone tissue and polymethylmethacrylate cement. J Mater Sci Mater Med. 2002;13(8):803–9.

    Article  CAS  Google Scholar 

  27. Bruens ML, Pieterman H, de Wijn JR, et al. Porous polymethylmethacrylate as bone substitute in the craniofacial area. J Craniofac Surg. 2003;14(1):63–8.

    Article  Google Scholar 

  28. Vallittu PK, Miettinen V, Alakuijala P. Residual monomer content and its release into water from denture base materials. Dent Mater. 1995;11(6):338–42.

    Article  CAS  Google Scholar 

  29. Vallittu PK, Ruyter IE, Buykuilmaz S. Effect of polymerization temperature and time on the residual monomer content of denture base polymers. Eur J Oral Sci. 1998;106(1):588–93.

    Article  CAS  Google Scholar 

  30. Frazer RQ, Byron RT, Osborne PB, West KP. PMMA: an essential material in medicine and dentistry. J Long Term Eff Med Implant. 2005;15(6):629–39.

    Article  CAS  Google Scholar 

  31. Narva KK, Lassila LV, Vallittu PK. The static strength and modulus of fiber reinforced denture base polymer. Dent Mater Off Publ Acad Dent Mater. 2005;21(5):421–8.

    Article  CAS  Google Scholar 

  32. Vallittu PK. Impregnation of glass fibres with polymethylmethacrylate using a powder-coating method. Appl Compos Mater. 1995;2(1):51–8.

    Article  CAS  Google Scholar 

  33. Vallittu PK. Flexural properties of acrylic resin polymers reinforced with unidirectional and woven glass fibers. J Prosthet Dent. 1999;81(3):318–26.

    Article  CAS  Google Scholar 

  34. Miller-Chou BA, Koenig JL. A review of polymer dissolution. Prog Polym Sci. 2003;28(8):1223–70.

    Article  CAS  Google Scholar 

  35. Ueberreiter K, Asmussen F. Velocity of dissolution of polymers. Part I. J Polym Sci. 1962;57(165):187–98.

    Article  CAS  Google Scholar 

  36. Hildebrand J, Scott RL. The solubility of nonelectrolytes. 3rd ed. New York: Reinhold; 1950.

    Google Scholar 

  37. Hansen CM. 50 Years with solubility parameters—past and future. Prog Org Coat. 2004;51(1):77–84.

    Article  CAS  Google Scholar 

  38. Belmares M, Blanco M, Goddard WA, et al. Hildebrand and Hansen solubility parameters from molecular dynamics with applications to electronic nose polymer sensors. J Comput Chem. 2004;25(15):1814–26.

    Article  CAS  Google Scholar 

  39. Ribar T, Bhargava R, Koenig JL. FT-IR imaging of polymer dissolution by solvent mixtures. 1. Solvents. Macromolecules. 2000;33(23):8842–9.

    Article  CAS  Google Scholar 

  40. Stamatialis DF, Sanopoulou M, Raptis I. Swelling and dissolution behavior of poly(methyl methacrylate) films in methyl ethyl ketone/methyl alcohol mixtures studied by optical techniques. J Appl Polym Sci. 2002;83(13):2823–34.

    Article  CAS  Google Scholar 

  41. Burnside SD, Giannelis EP. Synthesis and properties of new poly(dimethylsiloxane) nanocomposites. Chem Mater. 1995;7(9):1597–600.

    Article  CAS  Google Scholar 

  42. Thomason JL, Porteus G. Swelling of glass-fiber reinforced polyamide 66 during conditioning in water, ethylene glycol, and antifreeze mixture. Polym Compos. 2011;32(4):639–47.

    Article  CAS  Google Scholar 

  43. Park S, Jin J. Effect of silane coupling agent on interphase and performance of glass fibers/unsaturated polyester composites. J Colloid Interface Sci. 2001;242(1):174–9.

    Article  CAS  Google Scholar 

  44. Debnath S, Wunder SL, McCool JI, et al. Silane treatment effects on glass/resin interfacial shear strengths. Dent Mater. 2003;19(5):441–8.

    Article  CAS  Google Scholar 

  45. Shim V, Boheme J, Josten C, et al. Use of Polyurethane Foam in Orthopaedic Biomechanical Experimentation and Simulation. In Zafar F, Sharmin E, eds.Polyurethane. 1st ed.: InTech 2012:171–200.

  46. ASTM International. Standard Specification for Rigid Polyurethane Foam for Use as a Standard Material for Testing Orthopaedic Devices and Instruments. 2012;F1839 - 08(2012).

Download references

Acknowledgments

We thank laboratory technicians Hanna Mark and Päivi Mäki for preparation of the specimens. The study was funded by the University of Turku Foundation, Allan Aho Fund and Orion-Farmos Research Foundation. The study belongs to the activity of BioCity Turku Biomaterials Research Program (www.biomaterials.utu.fi).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. P. Hautamäki.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hautamäki, M.P., Puska, M., Aho, A.J. et al. Surface modification of fiber reinforced polymer composites and their attachment to bone simulating material. J Mater Sci: Mater Med 24, 1145–1152 (2013). https://doi.org/10.1007/s10856-013-4890-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-013-4890-9

Keywords

Navigation