Skip to main content
Log in

Chitosan/poly(dl,lactide-co-glycolide) scaffolds for tissue engineering

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Chitosan/poly(dl-lactide-co-glycolide) (Ch/dl PLG) composite scaffolds were fabricated by freeze-drying lyophilization, and were evaluated and compared for use as a bone regeneration scaffold through measurements of the compression mechanical properties of the porous scaffolds. Also, In vitro cell culture of Sprague–Dawley rat’s osteoblasts were used to evaluate the phenotype expression of cells in the scaffolds, characterizing the cellular adhesion, proliferation and alkaline phosphatase activity. The gene expression of osteocalcin, sialoprotein, alkaline phosphatase, Type I collagen and TGFβ1 were confirmed in the samples; moreover, it was confirmed, the mineralization by IR spectra and EDS analysis. Our results thus show that Ch/dl PLG scaffolds are suitable for biological applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. George J, Kuboki Y, Miyata T. Differentiation of mesenchymal stem cells into osteoblasts on honeycomb collagen scaffolds. Biotechnol Bioeng. 2006;95:404–11.

    Article  CAS  Google Scholar 

  2. Du D, Furukawa KS, Ushida T. 3D culture of osteoblast-like cells by unidirectional or oscillatory flow for bone tissue engineering. Biotechnol Bioeng. 2009;102:1670–8.

    Article  CAS  Google Scholar 

  3. Wu H, Wan Y, Cao X, Wu Q. Proliferation of chondrocytes on porous poly(dl-lactide)/chitosan scaffolds. Acta Biomater. 2008;4:76–87.

    Article  CAS  Google Scholar 

  4. Woo KM, Jun JH, Chen VJ, Seo J, Baek JH, Ryoo HM, et al. Nano-fibrous scaffolding promotes osteoblast differentiation and biomineralization. Biomaterials. 2007;28:335–43.

    Article  CAS  Google Scholar 

  5. Orava E, Korventausta J, Rosenberg M, Jokinen M, Rosling A. In vitro degradation of porous poly(dl-lactide-co-glycolide) (PLGA)/bioactive glass composite foams with a polar structure. Polym Degrad Stab. 2007;92:14–23.

    Article  CAS  Google Scholar 

  6. Autissier A, Le Visage C, Pouzet C, Chaubet F, Letourneur D. Fabrication of porous polysaccharide-based scaffolds using a combined freeze-drying/cross-linking process. Acta Biomater. 2010;6:3640–8.

    Article  CAS  Google Scholar 

  7. Sato T, Chen G, Ushida T, Ishii T, Ochiai T, Tateishi T, Tanaka J. Evaluation of PLLA-collagen hybrid sponge as a scaffold for cartilage tissue engineering. Mater Sci Eng C. 2004;24:365–72.

    Article  Google Scholar 

  8. Oh SH, Kang SG, Kim ES, Cho SH, Lee JH. Fabrication and characterization of hydrophilic poly(lactic-co-glycolic acid)/poly(vinyl alcohol) blend cell scaffolds by melt-molding particulate-leaching method. Biomaterials. 2003;24:4011–21.

    Article  CAS  Google Scholar 

  9. Noth U, Rackwitz L, Heymer A, Weber M, Baumann B, Steinert A, Schutze N, Jakob F, Eulert J. Chondrogenic differentiation of human mesenchymal stem cells in collagen type I hydrogels. J Biomed Mater Res A. 2007;83:626–35.

    Google Scholar 

  10. Dai W, Kawazoe N, Lin X, Dong J, Chen G. The influence of structural design of PLGA/collagen hybrid scaffolds in cartilage tissue engineering. Biomaterials. 2010;31:2141–52.

    Article  CAS  Google Scholar 

  11. Sakurai K, Maegawa T, Takahashi T. Glass transition temperature of chitosan and miscibility of chitosan/poly(N-vinyl pyrrolidone) blends. Polymer. 2000;41:7051–6.

    Article  CAS  Google Scholar 

  12. Nagahama H, Maeda H, Kashiki T, Jayakumar R, Furuike T, Tamura H. Preparation and characterization of novel chitosan/gelatin membranes using chitosan hydrogel. Carbohydr Polym. 2009;76:255–60.

    Article  CAS  Google Scholar 

  13. Wan Y, Cao X, Wi Q, Zhang S, Wang S. Preparation and mechanical properties of poly(chitosan-g-dl-lactic acid) fibrous mesh scaffolds. Polym Adv Tech. 2008;19:114–23.

    Article  CAS  Google Scholar 

  14. Lee J, Nam S, Im S, Park Y, Lee Y, Seol Y. Enhanced bone formation by controlled growth factor delivery from chitosan based biomaterials. J Control Release. 2002;78:187–97.

    Article  CAS  Google Scholar 

  15. Wan Y, Lu X, Dalai S, Zhang J. Thermophysical properties of polycaprolactone/chitosan blend membranes. Thermochim Acta. 2009;487:33–8.

    Article  CAS  Google Scholar 

  16. Schliecker G, Schmidt C, Fuchs S, Wombacher R, Kissel T. Hydrolytic degradation of poly(lactide-co-glycolide) films: effect of oligomers on degradation rate and crystallinity. Int J Pharm. 2003;266:39–49.

    Article  CAS  Google Scholar 

  17. Liu L, Won Y, Cooke PH, Coffin DR, Fishman ML, Hicks KB, Ma PX. Pectin/poly(lactide-co-glycolide) composite matrices for biomedical applications. Biomaterials. 2004;25:3201–10.

    Article  CAS  Google Scholar 

  18. Wan Y, Wu H, Yu A, Dijiang W. Biodegradable polylactide/chitosan blend membranes. Biomacromolecules. 2006;7:1362–72.

    Article  CAS  Google Scholar 

  19. Wan Y, Wu Q, Wang S, Zhang S, Hu Z. Mechanical properties of porous polylactide/chitosan blend membranes. Macromol Mater Eng. 2007;292:598–607.

    Article  CAS  Google Scholar 

  20. Di Toro R, Betti V, Spampinato S. Biocompatibility and integrin-mediated adhesión of human osteoblasts to poly (dl-lactide-co-glycolide) copolymers. Eur J Pharm Sci. 2004;21:161–9.

    Article  CAS  Google Scholar 

  21. Martel-Estrada S, Martínez-Pérez C, Chacón-Nava J, García-Casillas P, Olivas-Armendariz I, Martel-Estrada S, Martínez-Pérez C, Chacón-Nava J, García-Casillas P, Olivas-Armendáriz I. Synthesis and thermophysical properties of chitosan/poly(dl-lactide-co-glycolide) composites prepared by thermally induced phase separation. Carbohydr Polym. 2010;81:775–83.

    Article  CAS  Google Scholar 

  22. Anagnostou F, Debet A, Pavon-Djavid G, Goudaby Z, Hélary G, Migonney V. Osteoblast functions on functionalized PMMA-based polymers exhibiting Staphylococcus aureus adhesion inhibition. Biomaterials. 2006;27:3912–9.

    Article  CAS  Google Scholar 

  23. Mikus J, Steverding D. A simple colorimetric method to screen drug cytotoxicity against Leishmania using the dye Alamar Blue®. Parasitol Int. 2000;48:265–9.

    Article  CAS  Google Scholar 

  24. He L, Liu B, Xipeng G, Xie G, Liao S, Quan D, Cai D, Lu J, Ramakrishna S. Microstructure and properties of nano-fibrous PCL-b-PLLA scaffolds for cartilage tissue engineering. Eur Cell Mater. 2009;18:63–74.

    CAS  Google Scholar 

  25. Ciapetti G, Ambrosio L, Savarino L, Granchi D, Cenni E, Baldini N, et al. Osteoblast growth and function in porous poly ε-caprolactone matrices for bone repair: a preliminary study. Biomaterials. 2003;24:3815–24.

    Article  CAS  Google Scholar 

  26. Tsigkou O, Jones J, Polak J, Stevens M. Differentiation of fetal osteoblasts and formation of mineralized bone nodules by 45S5 Bioglass® conditioned medium in the absence of osteogenic supplements. Biomaterials. 2009;30:3542–50.

    Article  CAS  Google Scholar 

  27. Anagnostou F, Plas C, Nefussi JR, Forest N. Role of beta-GP-derived Pi in mineralization via ecto-alkaline phosphatase in cultured fetal calvaria cells. J Cell Biochem. 1996;62:262–74.

    Article  CAS  Google Scholar 

  28. St-Pierre J, Gauthier M, Lefebvre L, Tabrizian M. Three-dimensional growth of differentiating MC3T3-E1 pre-osteoblasts on porous titanium scaffolds. Biomaterials. 2005;26:7319–28.

    Article  CAS  Google Scholar 

  29. Gou Z, Chang J. Synthesis and in vitro bioactivity of dicalcium silicate powders. J Eur Ceram Soc. 2004;24:93–9.

    Article  CAS  Google Scholar 

  30. Rámila A, Vallet-Regí M. Static and dynamic in vitro study of a sol-gel glass bioactivity. Biomaterials. 2001;22:2301–6.

    Article  Google Scholar 

  31. Altmann B, Steinberg T, Giselbrecht S, Gottwald E, Tomakidi P, Bächle-Haas M, Kohal R. Promotion of osteoblast differentiation in 3D biomaterial micro-chip arrays comprising fibronectin-coated poly (methyl methacrylate) polycarbonate. Biomaterials. 2011;32:8947–56.

    Article  CAS  Google Scholar 

  32. Whited B, Whitney J, Hofmann M, Xu Y, Rylander M. Pre-osteoblast infiltration and differentiation in highly porous apatite-coated PLLA electrospun scaffolds. Biomaterials. 2011;32:2294–304.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the financial support of the Mexican Public Education Secretary (SEP) and the Mexican National Council for Science and Technology (CONACyT) through project SEP-CONACyT 2012-180909 and PROMEP 103.5/10/4995 UACJ-EXB-156. Also, we greatly appreciate the support of Christian Chapa and Monica Duarte during the SEM/EDS, and mechanical characterization. We are extremely grateful for the advice and assistance of Manuel Alejandro Hernández-Aguilar, B.S., Idahí Gutiérrez-Ornelas B.S., and Laura De la Rosa, PhD, during the cell culture.

Conflict of interest declaration

The authors have no conflict of interest to declare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Martel-Estrada.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martel-Estrada, S.A., Olivas-Armendáriz, I., Martínez-Pérez, C.A. et al. Chitosan/poly(dl,lactide-co-glycolide) scaffolds for tissue engineering. J Mater Sci: Mater Med 23, 2893–2901 (2012). https://doi.org/10.1007/s10856-012-4762-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-012-4762-8

Keywords

Navigation