Skip to main content

Advertisement

Log in

Modulation of osteogenic, adipogenic and myogenic differentiation of mesenchymal stem cells by submicron grooved topography

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Topographic cues have been recognized crucial on the modulation of cell behavior, and subsequent important for the design of implants, cell-based biomedical devices and tissue-engineered products. Grooved topography direct cells to align anisotropically on the substrates, resulting in an obvious morphological difference compared with the flat and the other topographies. This study aimed at investigating the effects of grooved topography on the differentiation of mesenchymal stem cells (MSCs) into osteoblasts, adipocytes and myoblasts. A series of submicron-grooved polystyrene substrates with equal groove-to-ridge ratio but different width and depth (width/depth (nm): 450/100, 450/350, 900/100, and 900/550) were fabricated based on electron beam lithography and soft lithography techniques. Primary rat MSCs (rMSCs) were cultured on these substrates without induction for differentiation for 6 days, and then subjected to induction for osteogenesis, adipogenesis and myogenesis. While the alignment of rMSCs strongly complied with the direction of the grooves and increased with groove depths, cell attachment on day 1 (~1.5 × 104/cm2) and cell proliferation after 6 days of culture (~5 × 104/cm2) were not significantly affected by substrate types. Osteogenesis, indicated by alkaline phosphatase activities and calcium deposit, was not significantly modulated by the grooved substrates, compared with the flat control, suggesting that cell alignment may not determine osteoinduction of rMSCs. On the other hand, adipogenesis, indicated by lipid production, was significantly enhanced by the grooved substrates compared with the flat surface (P < 0.001). On the other hand, myogenesis, indicated by desmin and MHC staining, was enhanced by the grooves in a time- and groove size-dependent manner compared with the flat control. The results suggested that grooved topography has an in-depth potential for modulating the commitment of the stem cell lineages, which could benefit the development of advanced biomaterials for biomedical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Clark P, Connolly P, Curtis ASG, Dow JAT, Wilkinson CDW. Topographical control of cell behaviour: II. multiple grooved substrata. Development. 1990;108:635–44.

    CAS  Google Scholar 

  2. Hamilton DW, Oates CJ, Hasanzadeh A, Mittler S. Migration of periodontal ligament fibroblasts on nanometric topographical patterns: influence of filopodia and focal adhesions on contact guidance. PLoS ONE. 2010;5:e15129.

    Article  CAS  Google Scholar 

  3. Curtis A, Riehle M. Tissue engineering: the biophysical background. Phys Med Biol. 2001;46:R47–65.

    Article  CAS  Google Scholar 

  4. Lim JY, Donahue HJ. Cell sensing and response to micro- and nanostructured surfaces produced by chemical and topographic patterning. Tissue Eng. 2007;13:1879–91.

    Article  CAS  Google Scholar 

  5. Wang P-Y, Clements LR, Thissen H, Jane A, Tsai W-B, Voelcker NH. Screening mesenchymal stem cell attachment and differentiation on porous silicon gradients. Adv Funct Mater. 2012. doi:10.1002/adfm.201200447.

  6. Wang P-Y, Thissen H, Tsai W-B. The roles of RGD and grooved topography in the adhesion, morphology, and differentiation of C2C12 skeletal myoblasts. Biotechnol Bioeng. 2012;109:2104–15.

    Article  CAS  Google Scholar 

  7. Wang P-Y, Yu J, Lin J-H, Tsai W-B. Modulation of alignment, elongation and contraction of cardiomyocytes through a combination of nanotopography and rigidity of substrates. Acta Biomater. 2011;7:3285–93.

    Article  CAS  Google Scholar 

  8. Jeon H, Hidai H, Hwang DJ, Healy KE, Grigoropoulos CP. The effect of micronscale anisotropic cross patterns on fibroblast migration. Biomaterials. 2010;31:4286–95.

    Article  CAS  Google Scholar 

  9. Yang J-Y, Ting Y-C, Lai J-Y, Liu H-L, Fang H-W, Tsai W-B. Quantitative analysis of osteoblast-like cells (MG63) morphology on nanogrooved substrata with various groove and ridge dimensions. J Biomed Mater Res A. 2009;90A:629–40.

    Article  CAS  Google Scholar 

  10. Yang Y, Kusano K, Frei H, Rossi F, Brunette DM, Putnins EE. Microtopographical regulation of adult bone marrow progenitor cells chondrogenic and osteogenic gene and protein expressions. J Biomed Mater Res A. 2010;95A:294–304.

    Article  CAS  Google Scholar 

  11. Kantawong F, Burchmore R, Wilkinson CD, Oreffo RO, Dalby MJ. Differential in-gel electrophoresis (DIGE) analysis of human bone marrow osteoprogenitor cell contact guidance. Acta Biomater. 2009;5:1137–46.

    Article  CAS  Google Scholar 

  12. Schneider GB, Zaharias R, Seabold D, Keller J, Stanford C. Differentiation of preosteoblasts is affected by implant surface microtopographies. J Biomed Mater Res A. 2004;69A:462–8.

    Article  CAS  Google Scholar 

  13. Tsai W-B, Lin J-H. Modulation of morphology and functions of human hepatoblastoma cells by nano-grooved substrata. Acta Biomater. 2009;5:1442–54.

    Article  CAS  Google Scholar 

  14. Wang P-Y, Yu H-T, Tsai W-B. Modulation of alignment and differentiation of skeletal myoblasts by submicron ridges/grooves surface structure. Biotechnol Bioeng. 2010;106:285–94.

    Article  CAS  Google Scholar 

  15. Wang P-Y, Wu T-H, Chao P-H, Kuo W-H, Wang M-J, Hsu C-C et al. Modulation of cell attachment and collagen production of anterior cruciate ligament cells via submicron grooves/ridges structures with different cell affinity. Biotechnol Bioeng. 2012. doi:10.1002/bit.24615.

  16. Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, et al. Multilineage potential of adult human mesenchymal stem cells. Science. 1999;284:143–7.

    Article  CAS  Google Scholar 

  17. Ohishi M, Schipani E. Bone marrow mesenchymal stem cells. J Cell Biochem. 2010;109:277–82.

    CAS  Google Scholar 

  18. Baksh D, Song L, Tuan RS. Adult mesenchymal stem cells: characterization, differentiation, and application in cell and gene therapy. J Cell Mol Med. 2004;8:301–16.

    Article  CAS  Google Scholar 

  19. Watari S, Hayashi K, Wood JA, Russell P, Nealey PF, Murphy CJ, et al. Modulation of osteogenic differentiation in hMSCs cells by submicron topographically-patterned ridges and grooves. Biomaterials. 2012;33:128–36.

    Article  CAS  Google Scholar 

  20. Dalby MJ, McCloy D, Robertson M, Wilkinson CD, Oreffo RO. Osteoprogenitor response to defined topographies with nanoscale depths. Biomaterials. 2006;27:1306–15.

    Article  CAS  Google Scholar 

  21. Wang P-Y, Tsai W-B, Voelcker NH. Screening of rat mesenchymal stem cell behaviour on polydimethylsiloxane stiffness gradients. Acta Biomater. 2012;8:519–30.

    Article  CAS  Google Scholar 

  22. Pochampally R. Colony forming unit assays for MSCs. Methods Mol Biol. 2008;449:83–91.

    Google Scholar 

  23. Grunkemeier JM, Tsai WB, Alexander MR, Castner DG, Horbett TA. Platelet adhesion and procoagulant activity induced by contact with radiofrequency glow discharge polymers: roles of adsorbed fibrinogen and vWF. J Biomed Mater Res. 2000;51:669–79.

    Article  CAS  Google Scholar 

  24. Tsai W-B, Chen RP-Y, Wei K-L, Tan S-F, Lai J-Y. Modulation of RGD-functionalized polyelectrolyte multilayer membranes for promoting osteoblast function. J Biomater Sci Polym Ed. 2010;21:377–94.

    Article  CAS  Google Scholar 

  25. Tsai W-B, Chen RP-Y, Wei K-L, Chen Y-R, Liao T-Y, Liu H-L, et al. Polyelectrolyte multilayer films functionalized with peptides for promoting osteoblast functions. Acta Biomater. 2009;5:3467–77.

    Article  CAS  Google Scholar 

  26. Yim EK, Pang SW, Leong KW. Synthetic nanostructures inducing differentiation of human mesenchymal stem cells into neuronal lineage. Exp Cell Res. 2007;313:1820–9.

    Article  CAS  Google Scholar 

  27. Weitzer G, Milner DJ, Kim JU, Bradley A, Capetanaki Y. Cytoskeletal control of myogenesis: a desmin null mutation blocks the myogenic pathway during embryonic stem cell differentiation. Dev Biol. 1995;172:422–39.

    Article  CAS  Google Scholar 

  28. Clark P, Dunn GA, Knibbs A, Peckham M. Alignment of myoblasts on ultrafine gratings inhibits fusion in vitro. Int J Biochem Cell Biol. 2002;34:816–25.

    Article  CAS  Google Scholar 

  29. Kurpinski K, Chu J, Hashi C, Li S. Anisotropic mechanosensing by mesenchymal stem cells. Proc Natl Acad Sci USA. 2006;103:16095–100.

    Article  CAS  Google Scholar 

  30. Li H, Wen F, Wong YS, Boey FY, Subbu VS, Leong DT, et al. Direct laser machining-induced topographic pattern promotes up-regulation of myogenic markers in human mesenchymal stem cells. Acta Biomater. 2011;8:531–9.

    Article  Google Scholar 

  31. WA3jciak-Stothard B, Curtis A, Monaghan W, MacDonald K, Wilkinson C. Guidance and activation of murine macrophages by nanometric scale topography. Exp Cell Res. 1996;223:426–35.

    Google Scholar 

  32. Yim EK, Darling EM, Kulangara K, Guilak F, Leong KW. Nanotopography-induced changes in focal adhesions, cytoskeletal organization, and mechanical properties of human mesenchymal stem cells. Biomaterials. 2010;31:1299–306.

    Article  CAS  Google Scholar 

  33. Kilian KA, Bugarija B, Lahn BT, Mrksich M. Geometric cues for directing the differentiation of mesenchymal stem cells. Proc Natl Acad Sci USA. 2010;107:4872–7.

    Article  CAS  Google Scholar 

  34. Salasznyk RM, Klees RF, Williams WA, Boskey A, Plopper GE. Focal adhesion kinase signaling pathways regulate the osteogenic differentiation of human mesenchymal stem cells. Exp Cell Res. 2007;313:22–37.

    Article  CAS  Google Scholar 

  35. Biggs MJ, Dalby MJ. Focal adhesions in osteoneogenesis. Proc Inst Mech Eng H. 2010;224:1441–53.

    Article  CAS  Google Scholar 

  36. Schaller MD, Borgman CA, Cobb BS, Vines RR, Reynolds AB, Parsons JT. pp 125FAK a structurally distinctive protein-tyrosine kinase associated with focal adhesions. Proc Natl Acad Sci USA. 1992;89:5192–6.

    Article  CAS  Google Scholar 

  37. Jaiswal RK, Jaiswal N, Bruder SP, Mbalaviele G, Marshak DR, Pittenger MF. Adult human mesenchymal stem cell differentiation to the osteogenic or adipogenic lineage is regulated by mitogen-activated protein kinase. J Biol Chem. 2000;275:9645–52.

    Article  CAS  Google Scholar 

  38. Ge C, Xiao G, Jiang D, Franceschi RT. Critical role of the extracellular signal-regulated kinase-MAPK pathway in osteoblast differentiation and skeletal development. J Cell Biol. 2007;176:709–18.

    Article  CAS  Google Scholar 

  39. Hamilton DW, Brunette DM. The effect of substratum topography on osteoblast adhesion mediated signal transduction and phosphorylation. Biomaterials. 2007;28:1806–19.

    Article  CAS  Google Scholar 

  40. Kokubu E, Hamilton DW, Inoue T, Brunette DM. Modulation of human gingival fibroblast adhesion, morphology, tyrosine phosphorylation, and ERK 1/2 localization on polished, grooved and SLA substratum topographies. J Biomed Mater Res A. 2009;91:663–70.

    Google Scholar 

  41. Song W, Lu H, Kawazoe N, Chen G. Adipogenic differentiation of individual mesenchymal stem cell on different geometric micropatterns. Langmuir. 2011;27:6155–62.

    Article  CAS  Google Scholar 

  42. Tsai W-B, Ting Y-C, Yang J-Y, Lai J-Y, Liu H-L. Fibronectin modulates the morphology of osteoblast-like cells (MG-63) on nano-grooved substrates. J Mater Sci Mater Med. 2009;20:1367–78.

    Article  CAS  Google Scholar 

  43. Curtis ASG. Mechanical tensing of cells and chromosome arrangement. In: Fyall F, El AJ, editors. Biomechanics and cells. Cambridge: Cambridge University Press; 1994. p. 121.

    Chapter  Google Scholar 

  44. Dalby MJ, Riehle MO, Yarwood SJ, Wilkinson CD, Curtis AS. Nucleus alignment and cell signaling in fibroblasts: response to a micro-grooved topography. Exp Cell Res. 2003;284:274–82.

    Article  CAS  Google Scholar 

  45. Thomas CH, Collier JH, Sfeir CS, Healy KE. Engineering gene expression and protein synthesis by modulation of nuclear shape. Proc Natl Acad Sci USA. 2002;99:1972–7.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial support from National Science Council, Taiwan (99-2221-E-002-131). We also thank National Nano Device Laboratories (Hsinchu, Taiwan) for fabrication of the grooved silicon wafers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei-Bor Tsai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, PY., Li, WT., Yu, J. et al. Modulation of osteogenic, adipogenic and myogenic differentiation of mesenchymal stem cells by submicron grooved topography. J Mater Sci: Mater Med 23, 3015–3028 (2012). https://doi.org/10.1007/s10856-012-4748-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-012-4748-6

Keywords

Navigation