Skip to main content

Advertisement

Log in

Local delivery of alendronate eluting chitosan scaffold can effectively increase osteoblast functions and inhibit osteoclast differentiation

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

The aim of this study was to investigate the effect of alendronate released from chitosan scaffolds on enhancement of osteoblast functions and inhibition of osteoclast differentiation in vitro. The surface and cell morphologies of chitosan scaffolds and alendronate-loaded chitosan scaffolds were characterized by variable pressure field emission scanning electron microscope (VP-FE-SEM). Alendronate was released in a sustained manner. For evaluating osteoblast functions in MG-63 cells, we investigated cell proliferation, alkaline phosphatase (ALP) activity, and calcium deposition. Furthermore, for evaluating inhibition of osteoclast differentiation in RAW 264.7 cells, we investigated tartrate-resistant acid phosphatase (TRAP) activity, TRAP staining, and gene expressions. The in vitro studies revealed that osteoblasts grown on alendronate-loaded chitosan scaffold showed a significant increment in cell proliferation, ALP activity, and calcium deposition as compared to those grown on chitosan scaffolds. In addition, the in vitro study showed that osteoclast differentiation in RAW 264.7 cells cultured on alendronate-loaded chitosan scaffolds was greatly inhibited as compared to those cultured on chitosan scaffolds by the results of TRAP activity, TRAP staining, and gene expressions. Taken together, alendronate-loaded chitosan scaffolds could achieve the dual functions of improvement in osteoblast functions and inhibition of osteoclast differentiation. Thus, alendronate-eluting chitosan substrates are promising materials for enhancing osteoblast functions and inhibiting osteoclast differentiation in orthopedic and dental fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Wang EA, Rosen V, D’Alessandro JS, Bauduy M, Cordes P, Harada T, Israel DI, Hewick RM, Kerns KM, LaPan P, et al. Recombinant human bone morphogenetic protein induces bone formation. Proc Natl Acad Sci USA. 1990;87(6):2220–4.

    Article  CAS  Google Scholar 

  2. Cook SD, Wolfe MW, Salkeld SL, Rueger DC. Effect of recombinant human osteogenic protein-1 on healing of segmental defects in non-human primates. J Bone Joint Surg Am. 1995;77(5):734–50.

    CAS  Google Scholar 

  3. Kim SE, Jeon O, Lee JB, Bae MS, Chun HJ, Moon SH, Kwon IK. Enhancement of ectopic bone formation by bone morphogenetic protein-2 delivery using heparin-conjugated PLGA nanoparticles with transplantation of bone marrow-derived mesenchymal stem cells. J Biomed Sci. 2008;15(6):771–7.

    Article  CAS  Google Scholar 

  4. Kim HK, Shim WS, Kim SE, Lee KH, Kang E, Kim JH, Kim K, Kwon IC, Lee DS. Injectable in situ-forming pH/thermo-sensitive hydrogel for bone tissue engineering. Tissue Eng Part A. 2009;15(4):923–33.

    Article  CAS  Google Scholar 

  5. Sellers RS, Zhang R, Glasson SS, Kim HD, Peluso D, D’Augusta DA, Beckwith K, Morris EA. Repair of articular cartilage defects one year after treatment with recombinant human bone morphogenetic protein-2 (rhBMP-2). J Bone Joint Surg Am. 2000;82(2):151–60.

    CAS  Google Scholar 

  6. Oura S, Tanino H, Yoshimasu T, Sakurai T, Nakamura T, Kokawa Y, Matsuyama K, Ohta F, Naito Y. Bisphosphonate therapy for bone metastases from breast cancer: clinical results and a new therapeutic approach. Breast Cancer. 2000;7(4):307–10.

    Article  CAS  Google Scholar 

  7. Holmberg AR, Lerner UH, Alayia AA, Al-Mohanna M, Adra C, Marquez M, Meurling L, Nilsson S. Development of a novel poly bisphosphonate conjugate for treatment of skeletal metastasis and osteoporosis. Int J Oncol. 2010;37(3):563–7.

    Article  CAS  Google Scholar 

  8. Malden NJ, Pai AY. Oral bisphosphonate associated osteonecrosis of the jaws: three case reports. Br Dent J. 2007;203(2):93–7.

    Article  CAS  Google Scholar 

  9. Lambrinoudaki I, Christodoulakos G, Botsis D. Bisphosphonates. Ann N Y Acad Sci. 1092;2006:397–402.

    Google Scholar 

  10. Silverman SL. Paget disease of bone: therapeutic options. J Clin Rheumatol. 2008;14(5):299–305.

    Article  Google Scholar 

  11. Russell RG, Xia Z, Dunford JE, Oppermann U, Kwaasi A, Hulley PA, Kavanagh KL, Triffitt JT, Lundy MW, Phipps RJ, Barnett BL, Coxon FP, Rogers MJ, Watts NB, Ebetino FH. Bisphosphonates: an update on mechanisms of action and how these relate to clinical efficacy. Ann N Y Acad Sci. 2007;1117:209–57.

    Article  CAS  Google Scholar 

  12. Russell RG. Bisphosphonates: from bench to bedside. Ann N Y Acad Sci. 2006;1068:367–401.

    Article  CAS  Google Scholar 

  13. Inoue Y, Hisa I, Seino S, Kaji H. Alendronate induces mineralization in mouse osteoblastic MC3T3-E1 cells: regulation of mineralization-related genes. Exp Clin Endocrinol Diabetes. 2010;118(10):719–23.

    Article  CAS  Google Scholar 

  14. Panzavolta S, Torricelli P, Bracci B, Fini M, Bigi A. Functionalization of biomimetic calcium phosphate bone cements with alendronate. J Inorg Biochem. 2010;104(10):1099–106.

    Article  CAS  Google Scholar 

  15. Kim HK, Kim JH, Abbas AA, Yoon TR. Alendronate enhances osteogenic differentiation of bone marrow stromal cells: a preliminary study. Clin Orthop Relat Res. 2009;467(12):3121–8.

    Article  Google Scholar 

  16. von Knoch F, Jaquiery C, Kowalsky M, Schaeren S, Alabre C, Martin I, Rubash HE, Shanbhag AS. Effects of bisphosphonates on proliferation and osteoblast differentiation of human bone marrow stromal cells. Biomaterials. 2005;26(34):6941–9.

    Article  Google Scholar 

  17. Wang CZ, Chen SM, Chen CH, Wang CK, Wang GJ, Chang JK, Ho ML. The effect of the local delivery of alendronate on human adipose-derived stem cell-based bone regeneration. Biomaterials. 2010;31(33):8674–83.

    Article  CAS  Google Scholar 

  18. Shi X, Wang Y, Ren L, Gong Y, Wang DA. Enhancing alendronate release from a novel PLGA/hydroxyapatite microspheric system for bone repairing applications. Pharm Res. 2009;26(2):422–30.

    Article  CAS  Google Scholar 

  19. Moon HJ, Yun YP, Han CW, Kim MS, Kim SE, Bae MS, Kim GT, Choi YS, Hwang EH, Lee JW, Lee JM, Lee CH, Kim DS, Kwon IK. Effect of heparin and alendronate coating on titanium surfaces on inhibition of osteoclast and enhancement of osteoblast function. Biochem Biophys Res Commun. 2011;413(2):194–200.

    Article  CAS  Google Scholar 

  20. Kim CW, Yun YP, Lee HJ, Hwang YS, Kwon IK, Lee SC. In situ fabrication of alendronate-loaded calcium phosphate microspheres: controlled release for inhibition of osteoclastogenesis. J Control Release. 2010;147(1):45–53.

    Article  CAS  Google Scholar 

  21. Cenni E, Avnet S, Granchi D, Fotia C, Salerno M, Micieli D, Sarpietro MG, Pignatello R, Castelli F, Baldini N. The effect of poly(d,l-Lactide co Glycolide) Alendronate Conjugate Nanoparticles on Human Osteoclast Precursors. J Biomater Sci Polym Ed. 2011; Epub ahead of print.

  22. Yu X, Pishko MV. Nanoparticle based biocompatible and targeted drug delivery: characterization and in vitro studies. Biomacromolecules. 2011;12(9):3205–12.

    Article  CAS  Google Scholar 

  23. Tan Q, Tang H, Hu J, Hu Y, Zhou X, Tao Y, Wu Z. Controlled release of chitosan/heparin nanoparticle-delivered VEGF enhances regeneration of decellularized tissue-engineered scaffolds. Int J Nanomedicine. 2011;6:929–42.

    Article  CAS  Google Scholar 

  24. Ikemoto S, Mochizuki M, Yamada M, Takeda A, Uchinuma E, Yamashina S, Nomizu M, Kadoya Y. Laminin peptide-conjugated chitosan membrane: application for keratinocyte delivery in wounded skin. J Biomed Mater Res A. 2006;79(3):716–22.

    Google Scholar 

  25. Lu S, Gao W, Gu HY. Construction, application and biosafety of silver nanocrystalline chitosan wound dressing. Burns. 2008;34(5):623–8.

    Article  Google Scholar 

  26. Blasinska A, Drobnik J. Effects of nonwoven mats of Di-O-butyrylchitin and related polymers on the process of wound healing. Biomacromolecules. 2008;9(3):776–82.

    Article  CAS  Google Scholar 

  27. Gil G, del Mónaco S, Cerrutti P, Galvagno M. Selective antimicrobial activity of chitosan on beer spoilage bacteria and brewing yeasts. Biotechnol Lett. 2004;26(7):569–74.

    Article  CAS  Google Scholar 

  28. Chua PH, Neoh KG, Kang ET, Wang W. Surface functionalization of titanium with hyaluronic acid/chitosan polyelectrolyte multilayers and RGD for promoting osteoblast functions and inhibiting bacterial adhesion. Biomaterials. 2008;29(10):1412–21.

    Article  CAS  Google Scholar 

  29. Ho MH, Wang DM, Hsieh HJ, Liu HC, Hsien TY, Lai JY, Hou LT. Preparation and characterization of RGD-immobilized chitosan scaffolds. Biomaterials. 2005;26(16):3197–206.

    Article  CAS  Google Scholar 

  30. Luca L, Rougemont AL, Walpoth BH, Gurny R, Jordan O. The effects of carrier nature and pH on rhBMP-2-induced ectopic bone formation. J Control Release. 2010;147(1):38–44.

    Article  CAS  Google Scholar 

  31. Weir MD, Xu HH. Osteoblastic induction on calcium phosphate cement-chitosan constructs for bone tissue engineering. J Biomed Mater Res A. 2010;94(1):223–33.

    Google Scholar 

  32. Chen J, Nan K, Yin S, Wang Y, Wu T, Zhang Q. Characterization and biocompatibility of nanohybrid scaffold prepared via in situ crystallization of hydroxyapatite in chitosan matrix. Colloids Surf B Biointerfaces. 2010;81(2):640–7.

    Article  CAS  Google Scholar 

  33. Kim SE, Choi HY, Lee HJ, Chang JH, Choi J, Kim KJ, Lim HJ, Jun YJ, Lee SC. Designing a highly bioactive 3D bone-regenerative scaffold by surface immobilization of nano-hydroxyapatite. J Mater Chem. 2008;18(41):4994–5001.

    Article  CAS  Google Scholar 

  34. Wang Y, Shi X, Ren L, Yao Y, Wang DA. In vitro osteogenesis of synovium mesenchymal cells induced by controlled release of alendronate and dexamethasone from a sintered microspherical scaffold. J Biomater Sci Polym Ed. 2010;21(8–9):1227–38.

    Article  CAS  Google Scholar 

  35. Bigi A, Boanini E, Capuccini C, Fini M, Mihailescu IN, Ristoscu C, Sima F, Torricelli P. Biofunctional alendronate-hydroxyapatite thin films deposited by matrix assisted pulsed laser evaporation. Biomaterials. 2009;30(31):6168–77.

    Article  CAS  Google Scholar 

  36. Choi SW, Kim JH. Design of surface-modified poly(d,l-lactide-co-glycolide) nanoparticles for targeted drug delivery to bone. J Control Release. 2007;122(1):24–30.

    Article  CAS  Google Scholar 

  37. Nafea EH, El-Massik MA, El-Khordagui LK, Marei MK, Khalafallah NM. Alendronate PLGA microspheres with high loading efficiency for dental applications. J Microencapsul. 2007;24(6):525–38.

    Article  CAS  Google Scholar 

  38. Chen J, Luo Y, Hong L, Ling Y, Pang J, Fang Y, Wei K, Gao X. Synthesis, characterization and osteoconductivity properties of bone fillers based on alendronate-loaded poly(ε-caprolactone)/hydroxyapatite microspheres. J Mater Sci Mater Med. 2011;22(3):547–55.

    Article  CAS  Google Scholar 

  39. Kim SE, Song SH, Yun YP, Choi BJ, Kwon IK, Bae MS, Moon HJ, Kwon YD. The effect of immobilization of heparin and bone morphogenic protein-2 (BMP-2) to titanium surfaces on inflammation and osteoblast function. Biomaterials. 2011;32(2):366–73.

    Article  CAS  Google Scholar 

  40. Kim SE, Park JH, Cho YW, Chung H, Jeong SY, Lee EB, Kwon IC. Porous chitosan scaffold containing microspheres loaded with transforming growth factor-beta1: implications for cartilage tissue engineering. J Control Release. 2003;91(3):365–74.

    Article  CAS  Google Scholar 

  41. Teitelbaum SL. Bone resorption by osteoclasts. Science. 2000;289(5484):1504–8.

    Article  CAS  Google Scholar 

  42. McManus S, Roux S. The adaptor protein p62/SQSTM1 in osteoclast signaling pathways. J Mol Signal. 2012;7:1.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by KBSI grant (T32513) to KP. We thank Boram Lee at the Chuncheon Center of the Korea Basic Science Institute for technical assistance in VP-FE-SEM image analyses (Variable Pressure Field Emission Scanning Electron Microscope, Carl Zeiss).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deok-Won Lee.

Additional information

Sung Eun Kim and Dong Hun Suh contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, S.E., Suh, D.H., Yun, YP. et al. Local delivery of alendronate eluting chitosan scaffold can effectively increase osteoblast functions and inhibit osteoclast differentiation. J Mater Sci: Mater Med 23, 2739–2749 (2012). https://doi.org/10.1007/s10856-012-4729-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-012-4729-9

Keywords

Navigation