Skip to main content

Advertisement

Log in

Effect of the calcium to phosphorus ratio on the setting properties of calcium phosphate bone cements

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

α-Tricalcium phosphate (α-TCP) has become the main reactant of most experimental and commercial ceramic bone cements. It has calcium-to-phosphorus (Ca/P) ratio of 1.50. The present study expands and reports on the microstructures and mechanical properties of calcium phosphate (CP) cements containing sintered monolithic reactants obtained in the interval 1.29 < Ca/P < 1.77. The study focuses on their cement setting and hardening properties as well as on their microstructure and crystal phase evolution. The results showed that: (a) CP-cements made with reactants with Ca/P ratio other than 1.50 have longer setting and lower hardening properties; (b) CP-cements reactivity was clearly affected by the Ca/P ratio of the starting reactant; (c) reactants with Ca/P < 1.50 were composed of several phases, calcium pyrophosphate and α- and β-TCP. Similarly, reactants with Ca/P > 1.50 were composed of α-TCP, tetracalcium phosphate and hydroxyapatite; (d) only the reactant with Ca/P = 1.50 was monophasic and was made of α-TCP, which transformed during the setting into calcium deficient hydroxyapatite; (e) CP-cements developed different crystal microstructures with specific features depending on the Ca/P ratio of the starting reactant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Vallet-Regí M, González-Calbet JM. Calcium phosphates as substitution for bone tissues. Prog Solid State Chem. 2004;32:1–31. doi:10.1016/j.progsolidstchem.2004.07.001.

    Article  Google Scholar 

  2. Vallet-Regí M. Ceramic for medical applications. J Chem Soc. 2001;17:97–108. doi:10.1039/B007852M.

    Google Scholar 

  3. Fernández E. Bioactive bone cements. In: Akay M, editor. Wiley encyclopedia of biomedical engineering, ISBN: 978-0-471-24967-2, vol. 1. New York: Wiley; 2006. p. 345–54. doi:10.1002/9780471740360.ebs1367.

    Google Scholar 

  4. De Aza PN, Guitián F, De Aza S. Bioeutectic: a new ceramic material for human bone replacement. Biomaterials. 1997;18:1285–91. doi:10.1016/S0142-9612(97)00063-X.

    Article  Google Scholar 

  5. Alemany MI, Velasquez P, de la Casa-Lillo MA, De Aza PN. Effect of materials’ processing methods on the ‘in vitro’ bioactivity of wollastonite glass-ceramic materials. J Non Cryst Solids. 2005;351:1716–26. doi:10.1016/j.jnoncrysol.2005.04.062.

    Article  CAS  Google Scholar 

  6. Dorozhkin SV. A review on the dissolution models of calcium apatites. Prog Cryst Growth Charact Mater. 2002;44(1):45–61. doi:10.1016/S0960-8974(02)00004-9.

    Article  CAS  Google Scholar 

  7. Petrov OE, Dyulgerova E, Petrov L, Popova R. Characterization of calcium phosphate phases obtained during the preparation of sintered biphase Ca–P ceramics. Mater Lett. 2001;48:162–7. doi:10.1016/S0167-577X(00)00297-4.

    Article  CAS  Google Scholar 

  8. Dorozhkina EI, Dorozhkin SV. Mechanism of the solid-state transformation of a calcium-deficient hydroxyapatite (CDHA) into biphasic calcium phosphate (BCP) at elevated temperatures. Chem Mater. 2002;14:4267–72. doi:10.1021/cm0203060.

    Article  CAS  Google Scholar 

  9. Bohner M. Calcium orthophosphates in medicine: from ceramics to calcium phosphate cements. Injury. 2000;31(S4):D37–47. doi:10.1016/S0020-1383(00)80022-4.

    Article  Google Scholar 

  10. Brown WE, Chow LC. Dental restorative cement pastes. US Patent No. 4518430; 1985.

  11. Tyllianakis M, Giannikas D, Panagopoulos A, Panagiotopoulos E, Lambiris E. Use of injectable calcium phosphate in the treatment of intra-articular distal radius fractures. Orthopedics. 2002;25(3):311–5.

    Google Scholar 

  12. Takegami K, Sano T, Wakabayashi H, Sonoda J, Yamazaki T, Morita S, Shibuya T, Uchida A. New ferromagnetic bone cement for local hyperthermia. J Biomed Mater Res. 1998;43:210–4. doi:10.1002/(SICI)1097-4636(199822)43:2<210:AID-JBM16>3.0.CO;2-L.

    Article  CAS  Google Scholar 

  13. Heini PF, Berlemann U. Bone substitutes in vertebroplasty. Eur Spine J. 2001;10:S203–15. doi:10.1007/s005860100308.

    Article  Google Scholar 

  14. Phillips FM. Minimally invasive treatments of osteoporotic vertebral compression fractures. Spine. 2003;28:S45–53.

    Google Scholar 

  15. Lewis G. Injectable bone cements for use in vertebroplasty and kyphoplasty: state of the art review. J Biomed Mater Res. 2005;76B(2):456–68. doi:10.1002/jbm.b.30398.

    Article  Google Scholar 

  16. Belkoff SM, Mathis JM, Jasper LE. Ex vivo biomechanical comparison of hydroxyapatite and polymethylmethacrylate cements for use with vertebroplasty. Am J Neuroradiol. 2002;23:1647–51.

    Google Scholar 

  17. Bohner M. Physical and chemical aspects of calcium phosphates used in spinal surgery. Eur Spine J. 2001;10:S114–21. doi:10.1007/s005860100276.

    Article  Google Scholar 

  18. Fernández E, Vlad MD, Gel MM, López J, Torres R, Cauich JV, Bohner M. Modulation of porosity in apatitic cements by the use of α-tricalcium phosphate–calcium sulphate dihydrate mixtures. Biomaterials. 2005;26:3395–404. doi:10.1016/j.biomaterials.2004.09.023.

    Article  Google Scholar 

  19. Gisep A, Wieling R, Bohner M, Matter S, Schneider E, Rahn B. Resorption patterns of calcium–phosphate cements in bone. J Biomed Mater Res. 2003;66:532–40. doi:10.1002/jbm.a.10593.

    Article  CAS  Google Scholar 

  20. Carrodeguas RG, De Aza AH, Turrillas X, Pena P, De Aza S. New approach to the β → α polymorphic transformation in magnesium-substituted tricalcium phosphate and its practical implications. J Am Ceram Soc. 2008;91:1281–6. doi:10.1111/j.1551-2916.2008.02294.x.

    Article  CAS  Google Scholar 

  21. Reid JW, Tuck L, Sayer M, Fargo K, Hendry JA. Synthesis and characterization of single-phase silicon-substituted α-tricalcium phosphate. Biomaterials. 2006;27(15):2916–25. doi:10.1016/j.biomaterials.2006.01.007.

    Article  CAS  Google Scholar 

  22. Cicek G, Aksoy EA, Durucan C, Hasirci N. Alpha-tricalcium phosphate (α-TCP): solid state synthesis from different calcium precursors and the hydraulic reactivity. J Mater Sci Mater Med. 2011;22:809–17. doi:10.1007/s10856-011-4283-x.

    Article  CAS  Google Scholar 

  23. Lilley KJ, Gbureck U, Knowles JC, Farrar DF, Barralet JE. Cement from magnesium substituted hydroxyapatite. J Mater Sci Mater Med. 2005;16(5):455–60. doi:10.1007/s10856-005-6986-3.

    Article  CAS  Google Scholar 

  24. Kannan S, Rocha JHG, Ventura JMG, Lemos AF, Ferreira JMF. Effect of Ca/P ratio of precursors on the formation of different calcium apatitic ceramics—an X-ray diffraction study. Scripta Mater. 2005;53:1259–62. doi:10.1016/j.scriptamat.2005.07.037.

    Article  CAS  Google Scholar 

  25. Lilley KJ, Gburech U, Wright AJ, Farrar DF, Barralet JE. Cement from nanocrystalline hydroxyapatite: effect of calcium phosphate ratio. J Mater Sci Mater Med. 2005;16:1185–90. doi:10.1007/s10856-005-4727-2.

    Article  CAS  Google Scholar 

  26. Wang H, Lee J-K, Moursi A, Lannutti JJ. Ca/P ratio effects on the degradation of hydroxyapatite in vitro. J Biomed Mater Res. 2003;67A:599–608. doi:10.1002/jbm.a.10538.

    Article  CAS  Google Scholar 

  27. Burguera EF, Guitián F, Chow LC. Effect of the calcium to phosphate ratio of tetracalcium phosphate on the properties of calcium phosphate bone cement. J Biomed Mater Res. 2008;85A:674–83. doi:10.1002/jbm.a.31478.

    Article  CAS  Google Scholar 

  28. Standard Test Method: ASTM C266-89. Time of setting of hydraulic cement paste by Gillmore needles. In: Annual book of ASTM standards, vol. 04.01. Cement, lime, gypsum. Philadelphia: ASTM; 1993. p. 444–472.

  29. Carrodeguas RG, De Aza S. α-Tricalcium phosphate: synthesis, properties and biomedical applications. Acta Biomater. 2011;7(10):3536–46. doi:10.1016/j.actbio.2011.06.019.

    Article  CAS  Google Scholar 

  30. Fernández E, Gil FJ, Ginebra MP, Driessens FCM, Planell JA, Best SM. Calcium phosphate bone cements for clinical applications. I: solution chemistry. J Mater Sci Mater Med. 1999;10:169–76. doi:10.1023/A:1008937507714.

    Article  Google Scholar 

  31. Fernández E, Gil FJ, Ginebra MP, Driessens FCM, Planell JA, Best SM. Calcium phosphate bone cements for clinical applications. II: precipitate formation during setting reactions. J Mater Sci Mater Med. 1999;10:177–83. doi:10.1023/A:1008989525461.

    Article  Google Scholar 

  32. Francis MD. The inhibition of calcium hydroxyapatite crystal growth by polyphosphonates and polyphosphates. Calcif Tissue Int. 1969;3(1):151–62. doi:10.1007/BF02058658.

    Article  CAS  Google Scholar 

  33. Fernández E, Ginebra MP, Boltong MG, Driessens FCM, Ginebra J, De Maeyer EA, Verbeeck RM, Planell JA. Kinetic study of the setting reaction of calcium phosphate bone cements. J Biomed Mater Res. 1996;32:367–74. doi:10.1002/jbm.10264.

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank funding through project MAT2010-19431 (Ministerio de Ciencia e Innovación, Spain). Special thanks to Ms. Maria Odriozola for the English grammar corrections.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Fernández.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vlad, M.D., Gómez, S., Barracó, M. et al. Effect of the calcium to phosphorus ratio on the setting properties of calcium phosphate bone cements. J Mater Sci: Mater Med 23, 2081–2090 (2012). https://doi.org/10.1007/s10856-012-4686-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-012-4686-3

Keywords

Navigation