Skip to main content

Advertisement

Log in

In vivo behavior of biodegradable Mg–Nd–Y–Zr–Ca alloy

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

The aim of the this study is to evaluate the in vivo behavior of Mg–1.5%Nd–0.5%Y–0.5%Zr implants with and without 0.4%Ca in comparison with inert Ti-6Al-4V reference implants. This was carried out by implanting cylindrical disks at the back midline of Wister male rats within the subcutaneous layer of the skin for up to 12 weeks. The degradation of magnesium-based implants in terms of hydrogen gas bubble formation was evaluated by radiography assessment; corrosion rate was analyzed by visual examination and weight loss measurements. The physiological response of the rats post-implantation was obtained by evaluating their wellbeing behavior and blood biochemical analysis including serum Mg, blood urea nitrogen, and serum creatinine. In addition, histological analyses of the soft tissue around the implants were carried out to assess local lesions relating to the implants such as inflammation, tissue necrosis, granulation, mineralization, and tumor development. The results obtained clearly indicate that apart from the normal degradation characteristics and subsequent formation of hydrogen gas bubbles, the in vivo behavior of Mg implants was adequate and comparable to that of Ti-6Al-4V reference alloy. In addition, it was evident that the corrosion degradation of the magnesium alloys was strongly related to the location of the implant within the animal’s body. The addition of 0.4%Ca improves the biodegradation corrosion resistance of the tested magnesium implants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Witte F. The history of biodegradable magnesium implants: a review. Acta Biomater. 2010;6:1680–92.

    Article  CAS  Google Scholar 

  2. Aghion E, Arnon A, Atar D, Segal G. Biodegradable magnesium alloys and uses thereof. US Patent PCT/IL 2007/000520. 2007.

  3. Stroganov GB, Savitski EM, Tikhov NM, Terekhova VF, Volkov MV, Sivash KM. Magnesium-base alloy for use in bone surgery. US Patent 3687135. 1972.

  4. Li M, Chen Q, Zhang W, Hu W, Su y. Corrosion behavior in SBF for titania coatings on Mg–Ca alloy. J Mater Sci. 2011;46:2365–9.

    Article  CAS  Google Scholar 

  5. Brar HS, Platt MO, Sarntinoranont M, Martin P, Manuel M. Magnesium as a biodegradable and bioabsorbable material for medical implants. JOM J Min Met Mater Soc. 2009;61:31–4.

    Article  CAS  Google Scholar 

  6. Zeng R, Dietzel W, Witte F, Hort N, Blawert C. Progress and challenge for magnesium alloys as biomaterials. Adv Eng Mater. 2008;10:B3–14.

    Article  CAS  Google Scholar 

  7. Witte F, Kaese V, Haferkamp H, Switzer E, Meyer-Lindenberg A, Wirth CJ, Windhagen H. In vivo corrosion of four magnesium alloys and the associated bone response. Biomaterials. 2005;26:3557–63.

    Article  CAS  Google Scholar 

  8. Aghion E, Yered T, Perez Y, Gueta Y. The prospects of carrying and releasing drugs via biodegradable magnesium foam. Adv Eng Mater. 2010;12:B374–9.

    Article  Google Scholar 

  9. Song G, Song S. A possible biodegradable magnesium implant material. Adv Eng Mater. 2007;9:298–302.

    Article  CAS  Google Scholar 

  10. Li J, Cao P, Zhang X, Zhang S, He Y. In vitro degradation and cell attachment of a PLGA coated biodegradable Mg–6Zn based alloy. J Mater Sci. 2010;45:6038–45.

    Article  CAS  Google Scholar 

  11. Staigera MP, Pietaka AM, Huadmaia J, Diasb G. Magnesium and its alloys as orthopedic biomaterials: a review. Biomaterials. 2006;27:1728–34.

    Article  Google Scholar 

  12. Erinc M, Sillekens WH, Mannens R, Werkhoven RJ. Applicability of existing magnesium alloys as biomedical implants materials. In: Nyberg EA, Agnew SR, Neelameggham NR, Pekguleryuz MO editors. TMS magnesium technology 2009. San Francisco: Annual Meeting & Exhibition Feb. 15–19; 2009 p. 209–214.

  13. Gu X, Zheng Y, Cheng Y, Zhong S, Xi T. In vitro corrosion and biocompatibility of binary magnesium alloys. Biomaterials. 2009;30:484–98.

    Article  CAS  Google Scholar 

  14. Yuen CK, Ip WY. Theoretical risk assessment of magnesium alloys as degradable biomedical implants. Acta Biomater. 2010;6:1808–12.

    Article  CAS  Google Scholar 

  15. Saris NEL, Mervaala E, Karppanen H, Khawaja JA, Lewenstam A. Magnesium: an update on physiological, clinical and analytical aspects. Clini Chim Acta. 2000;294:1–26.

    Article  CAS  Google Scholar 

  16. Swaminathan R. Magnesium metabolism and its disorders. Clin Biochem Rev. 2003;24:47–66.

    CAS  Google Scholar 

  17. Musso CG. Magnesium metabolism in health and disease. Int Urol Nephrol. 2009;41:357–62.

    Article  CAS  Google Scholar 

  18. Quamme GA. Renal magnesium handling: new insights in understanding old problems. Kidney Int. 1997;52:1180–95.

    Article  CAS  Google Scholar 

  19. Xu L, Yu G, Zhang E, Pan F, Yang K. In vivo corrosion behavior of Mg–Mn–Zn alloy for bone implant application. J Biomed Mater Res A. 2007;83:703–11.

    Google Scholar 

  20. Hänzi AC, Gerber I, Schinhammer M, Löffler JF, Uggowitzer PJ. On the in vitro and in vivo degradation performance and biological response of new biodegradable Mg–Y–Zn alloys. Acta Biomater. 2010;6:1824–33.

    Article  Google Scholar 

  21. Aghion E, Levy G. The effect of Ca on the in vitro corrosion performance of biodegradable Mg–Nd–Y–Zr alloy. J Mater Sci. 2010;45:3096–101.

    Article  CAS  Google Scholar 

  22. Castellani C, Lindtner RA, Hausbrandt P, Tschegg E, Tschegg S, Zanoni G, Beck S, Weinberg AM. Bone-implant interface strength and osseointegration: biodegradable magnesium alloy versus standard titanium control. Acta Biomater. 2011;7:432–40.

    Article  CAS  Google Scholar 

  23. AML, Laboratory Animal Department, Rat-Chemistry. Available from: http://www.en.aml-vet.com/animal-species/rat/chemistry. Accessed 10.02.11.

  24. Witte F, Hort N, Vogt C, Cohen S, Kainer KU, Willumeit R, Feyerabend F. Degradable biomaterials based on magnesium corrosion. Curr Opin Solid State Mater Sci. 2008;12:63–72.

    Article  CAS  Google Scholar 

  25. Li Z, Gu X, Lou S, Zheng Y. The development of binary Mg–Ca alloys for use as biodegradable materials within bone. Biomaterials. 2008;29:1329–44.

    Article  CAS  Google Scholar 

  26. Li Y, Hodgson P, Wen C. The effects of calcium and yttrium additions on the microstructure, mechanical properties and biocompatibility of biodegradable magnesium alloys. J Mater Sci. 2011;46:365–71.

    Article  Google Scholar 

  27. Erdmann N, Angrisani N, Reifenrath J, Lucas A, Thorey F, Bormann D, Meyer-Lindenberg A. Biomechanical testing and degradation analysis of MgCa 0.8 alloy screws: a comparative in vivo study in rabbits. Acta Biomater. 2011;7:1421–8.

    Article  CAS  Google Scholar 

  28. Krause A, von der Höh N, Bormann D, Krause C, Bach FW, Windhagen H, Meyer-Lindenberg A. Degradation behaviour and mechanical properties of magnesium implants in rabbit tibiae. J Mater Sci. 2010;45:624–32.

    Article  CAS  Google Scholar 

  29. Ferreira PC, Piai KA, Takayanagui AMM, Segura-Muñoz SI. Aluminum as a risk factor for Alzheimer’s disease. Rev Lat Am Enferm. 2008;16:151–7.

    Article  Google Scholar 

  30. Isabel Post J, Karl Eibl J, Michiel Ross G. Zinc induces motor neuron death via a selective inhibition of brain-derived neurotrophic factor activity. Amyotroph Lateral Scler. 2008;9:149–55.

    Article  Google Scholar 

  31. Bock NA, Paiva FF, Nascimento GC, Newman JD, Silva AC. Cerebrospinal fluid to brain transport of manganese in a non-human primate revealed by MRI. Brain Res. 2008;1198:160–70.

    Article  CAS  Google Scholar 

  32. Zhang S, Zhang X, Zhao C, Li J, Song Y, Xie C, Tao H, Zhang Y, He Y, Jiang Y. Research on an Mg–Zn alloy as a degradable biomaterial. Acta Biomater. 2010;6:626–40.

    Article  CAS  Google Scholar 

  33. Ghali E, Dietzel W, Kainer KU. General and localized corrosion of magnesium alloys: a critical review. J Mater Eng Perform. 2004;13:7–23.

    Article  CAS  Google Scholar 

  34. Avedesian M, Baker H. ASM specialty handbook—magnesium and magnesium alloys. Materials Park: ASM International; 1999.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Aghion.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aghion, E., Levy, G. & Ovadia, S. In vivo behavior of biodegradable Mg–Nd–Y–Zr–Ca alloy. J Mater Sci: Mater Med 23, 805–812 (2012). https://doi.org/10.1007/s10856-011-4536-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-011-4536-8

Keywords

Navigation