Skip to main content

Advertisement

Log in

Hydroxyapatite nanorod-reinforced biodegradable poly(l-lactic acid) composites for bone plate applications

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Novel PLLA composite fibers containing hydroxyapatite (HAp) nanorods with or without surface lactic acid grafting were produced by extrusion for use as reinforcements in PLLA-based bone plates. Fibers containing 0–50% (w/w) HAp nanorods, aligned parallel to fiber axis, were extruded. Lactic acid surface grafting of HAp nanorods (lacHAp) improved the tensile properties of composites fibers better than the non-grafted ones (nHAp). Best tensile modulus values of 2.59, 2.49, and 4.12 GPa were obtained for loadings (w/w) with 30% lacHAp, 10% nHAp, and 50% amorphous HAp nanoparticles, respectively. Bone plates reinforced with parallel rows of these composite fibers were molded by melt pressing. The best compressive properties for plates were obtained with nHAp reinforcement (1.31 GPa Young’s Modulus, 110.3 MPa compressive strength). In vitro testing with osteoblasts showed good cellular attachment and spreading on composite fibers. In situ degradation tests revealed faster degradation rates with increasing HAp content. To our knowledge, this is the first study containing calcium phosphate–polymer nanocomposite fibers for reinforcement of a biodegradable bone plate or other such implants and this biomimetic design was concluded to have potential for production of polymer-based biodegradable bone plates even for load bearing applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Choueka J, Charvet JL, Alexander H, Oh YH, Joseph G, Blumenthal NC, Lacourse WC. Effect of annealing temperature on the degradation of reinforcing fibers for absorbable implants. J Biomed Mater Res. 1995;29:1309–15.

    Article  CAS  Google Scholar 

  2. Benli S, Aksoy S, Havitcioglu H, Kucuk M. Evaluation of bone plate with low-stiffness material in terms of stress distribution. J Biomech. 2008;41(15):3229–35.

    Article  Google Scholar 

  3. Fouad H. Effects of the bone-plate material and the presence of a gap between the fractured bone and plate on the predicted stresses at the fractured bone. Med Eng Phys. 2010;32:783–9.

    Article  CAS  Google Scholar 

  4. Davis JR. Handbook of materials for medical devices. Metals Park, Ohio: ASM International; 2003. p. 17.

    Google Scholar 

  5. Sun ZL, Wataha JC, Hanks CT. Effects of metal ions on osteoblast-like cell metabolism and differentiation. J Biomed Mater Res. 1997;34:29–37.

    Article  CAS  Google Scholar 

  6. Urban RM, Tomlinson MJ, Hall DJ, Jacobs JJ. Accumulation in liver and spleen of metal particles generated at nonbearing surfaces in hip arthroplasty. J Arthroplasty. 2004;19(8):94–101.

    Article  Google Scholar 

  7. Kulkarni RK, Pani KC, Neuman C, Leonard F. Polylactic acid for surgical implants. Arch Surg. 1966;93:839–43.

    CAS  Google Scholar 

  8. Eppley BL. A bioabsorbable poly-l-lactide miniplate and screw system for osteosynthesis in oral and maxillofacial surgery—discussion. J Oral Maxillofac Surg. 1997;55(9):945–6.

    Article  Google Scholar 

  9. Habal MB, Pietrzak WS. Key points in the fixation of the craniofacial skeleton with absorbable biomaterial. J Craniofac Surg. 1999;10(6):491–9.

    Article  CAS  Google Scholar 

  10. Middleton JC, Tipton AJ. Synthetic biodegradable polymers as orthopedic devices. Biomaterials. 2000;21(23):2335–46.

    Article  CAS  Google Scholar 

  11. Suzuki T, Kawamura H, Kasahara T, Nagasaka H. Resorbable poly-l-lactide plates and screws for the treatment of mandibular condylar process fractures: a clinical and radiologic follow-up study. J Oral Maxil Surg. 2004;62(8):919–24.

    Article  Google Scholar 

  12. Bergsma JE, Rozema FR, Bos RRM, Boering G, de Bruijn WC, Pennings AJ. In vivo degradation and biocompatibility study of in vitro pre-degraded as-polymerized polylactide particles. Biomaterials. 1995;16(4):267–74.

    Article  CAS  Google Scholar 

  13. Pruitt L, Furmanski J. Polymeric biomaterials for load-bearing medical devices. JOM. 2009;61(9):14–20.

    Article  CAS  Google Scholar 

  14. Verheyen CCPM, De Wijn JR, Van Blitterswijk CA, De Groot D. Evaluation of hydroxylapatite/poly (l-lactide) composites: mechanical behavior. J Biomed Mater Res. 1992;26:1277–96.

    Article  CAS  Google Scholar 

  15. Shikinami Y, Okuno M. Bioresorbable devices made of forgedcomposites of hydroxyapatite (HA) particles/poly l-lactide (PLLA). I. Basic characteristics. Biomaterials. 1999;20:859–77.

    Article  CAS  Google Scholar 

  16. Ignjatovic N, Suljovrujic E, Budinski-Simendic J, Krakovsky I, Uskokovic D. Evaluation of hot-pressed hydroxyapatite/poly-l-lactide composite biomaterial characteristics. J Biomed Mater Res B. 2004;71B:284–94.

    Article  CAS  Google Scholar 

  17. Rizzi SC, Heath DJ, Coombes AGA, Bock N, Textor M, Downes S. Biodegradable polymer/hydroxyapatite composites: surface analysis and initial attachment of human osteoblasts. J Biomed Mater Res. 2001;55:475–86.

    Article  CAS  Google Scholar 

  18. Dalton JE, Cook SD, Thomas KA, Kay JF. The effect of operative fit and hydroxyapatite coating on the mechanical and biological response to porous implants. J Bone Joint Surg Am. 1995;77:97.

    CAS  Google Scholar 

  19. Ducheyne P, Qiu Q. Bioactive ceramics: the effect of surface reactivity on bone formation and bone cell function. Biomaterials. 1999;20:2287–303.

    Article  CAS  Google Scholar 

  20. Furukawa T, Matsusue Y, Yasunaga T, Shikinami Y, Okuno M, Nakamura T. Biodegradation behavior of ultra-high-strength hydroxyapatite/poly (l-lactide) composite rods for internal fixation of bone fractures. Biomaterials. 2000;21:889–98.

    Article  CAS  Google Scholar 

  21. Soballe K, Hansen ES, Brockstedt-Rasmussen H, Bünger C. Hydroxyapatite coating converts fibrous anchorage to bony fixation during continuous implant loading. J Bone Joint Surg. 1993;73:270.

    Google Scholar 

  22. Jarcho M, Kay JE, Gumaer KI, Doremus RH, Drobeck HP. Tissue, cellular and subcellular events at a bone-ceramic hydroxyapatite interface. J Bioeng. 1977;1:79–92.

    CAS  Google Scholar 

  23. Skrtic D, Antonucci JM, Eanes ED. Amorphous calcium phosphate-based bioactive polymeric composites for mineralized tissue regeneration. J Res Natl Inst Stand Technol. 2003;108:167–82.

    CAS  Google Scholar 

  24. Van Blitterswijk CA, Grote JJ, Kuypers W, Blok-van Hoek CJG, Daems WTh. Biointeractions at the tissue/hydroxyapatite interface. Biomaterials. 1985;43:243–51.

    Article  Google Scholar 

  25. Ji B, Gao H. Mechanical properties of nanostructure of biological materials. J Mech Phys Solids. 2004;52:1963–70.

    Article  Google Scholar 

  26. Deng X, Hao J, Wang C. Preparation and mechanical properties of nanocomposites of poly(d,l-lactide) with Ca-defiient hydroxyapatite nanocrystals. Biomaterials. 2001;22:2867–73.

    Article  CAS  Google Scholar 

  27. Kasuga T, Ota Y, Nogami M, Abe Y. Preparation and mechanical properties of polylactic acid composites containing hydroxyapatite fibers. Biomaterials. 2001;22(1):19–23.

    Article  CAS  Google Scholar 

  28. Deng C, Weng J, Lu X, Zhou ZB, Wan JX, Qu SX, et al. Preparation and in vitro bioactivity of poly(d,l-lactide) composite containing hydroxyapatite nanocrystals. Mater Sci Eng C. 2008;28(8):1304–10.

    Article  CAS  Google Scholar 

  29. Zheng X, Zhou S, Xiao Y, Yu X, Feng B. In situ preparation and characterization of a novel gelatin/poly(d,l-lactide)/hydroxyapatite nanocomposite. J Biomed Mater Res Part B. 2009;91B:181–90.

    Article  CAS  Google Scholar 

  30. Takayama T, Todo M, Takano A. The effect of bimodal distribution on the mechanical properties of hydroxyapatite particle filled poly(l-lactide) composites. J Mech Behav Biomed Mater. 2009;2(1):105–12.

    Article  Google Scholar 

  31. Takayama T, Todo M. Improvement of mechanical properties of hydroxyapatite particle-filled poly(l-lactide) biocomposites using lysine tri-isocyanate. J Mater Sci. 2009;44:5017–20.

    Article  CAS  Google Scholar 

  32. Xin F, Jian C, Jianming R, Zhongcheng Z, Jianpeng Z. Effects of surface modification on the properties of poly(lactide-co-glycolide) composite materials. Polym Plast Technol Eng. 2009;48:658–64.

    Article  CAS  Google Scholar 

  33. Suuronen R, Pohjonen T, Wessman L, Törmala P, Vainionpaa S. New generation biodegradable plate for fracture fixation. Comparison of bending strengths of mandibular osteotomies fixed with absorbable self-reinforced multi-layer poly-l-lactide plates and metallic plates. An experimental study in sheep. Clin Mater. 1992;9:77–84.

    Article  CAS  Google Scholar 

  34. Huttunen M, Ashammakhi N, Törmälä P, Kellomäki M. Fibre reinforced bioresorbable composites for spinal surgery. Acta Biomater. 2006;2:575–87.

    Article  Google Scholar 

  35. Parsons AJ, Ahmed I, Haque P, Fitzpatrick B, Niazi MIK, Walker GS, Rudd CD. Phosphate glass fibre composites for bone repair. J Bionic Eng. 2009;6:318–23.

    Article  Google Scholar 

  36. Bühler M, Bourban PE, Manson JAE. Cellular composites based on continuous fibres and bioresorbable polymers. Compos A. 2008;39:1779–86.

    Article  Google Scholar 

  37. Yubao L, De Wijn J, Klein CPAT, Van Der Meer S. Preparation and characterization of nanograde osteoapatite-like rod crystals. J Mater Sci Mater Med. 1995;5:252–5.

    Article  Google Scholar 

  38. Qiu X, Hong Z, Hu J, Chen l, Chen X, Jing X. Hydroxyapatite surface modified by l-lactic acid and its subsequent grafting polymerization of l-lactide. Biomacromolecules. 2005;6:1193–9.

    Article  CAS  Google Scholar 

  39. Kose GT, Kenar H, Hasirci N, Hasirci V. Macroporous poly (3-hydroxybutyrate-co-3-hydroxyvalerate) matrices for bone tissue engineering. Biomaterials. 2003;24(11):1949–58.

    Article  CAS  Google Scholar 

  40. Cassanas G, Morssli M, Fabregue E, Bardet L. Vibrational spectra of lactic acid and lactates. J Raman Spectrosc. 1991;22:409–13.

    Article  CAS  Google Scholar 

  41. Hong Z, Zhang P, He C, Qiu X, Liu A, Chen L, et al. Nano-composite of poly(l-lactide) and surface grafted hydroxyapatite: Mechanical properties and biocompatibility. Biomaterials. 2005;26(32):6296–304.

    Article  CAS  Google Scholar 

  42. Cheang P, Khor KA. Effect of particulate morphology on the tensile behaviour of polymer–hydroxyapatite composites. Mat Sci Eng A. 2003;345(1–2):47–54.

    Article  Google Scholar 

  43. Weir NA, Buchanan FJ, Orr JF, Dickson GR. Degradation of poly-l-lactide. Part 1: in vitro and in vivo physiological temperature degradation. Proc Inst Mech Eng H. 2004;218(5):307–19.

    Article  CAS  Google Scholar 

  44. Lewitus D, McCarthy S, Ophir A, Kenig S. The effect of nanoclays on the properties of PLLA-modified polymers part 1: mechanical and thermal properties. J Polym Environ. 2006;14:171–7.

    Article  CAS  Google Scholar 

  45. Roeder RK, Converse GL, Kane RJ, Yue W. Hydroxyapatite-reinforced polymer biocomposites for synthetic bone substitutes. JOM. 2008;60(3):38–45.

    Article  CAS  Google Scholar 

  46. Ishaug SL, Payne RG, Yaszemski MJ, Aufdemorte TB, Bizios R, Mikos AG. Osteoblast migration on poly(α-hydroxy esters). Biotechnol Bioeng. 1996;50:443–51.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the support by the Scientific and Technical Research Council of Turkey (TUBITAK) (TBAG 105T508) and METU BAP.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vasif Hasirci.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aydin, E., Planell, J.A. & Hasirci, V. Hydroxyapatite nanorod-reinforced biodegradable poly(l-lactic acid) composites for bone plate applications. J Mater Sci: Mater Med 22, 2413–2427 (2011). https://doi.org/10.1007/s10856-011-4435-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-011-4435-z

Keywords

Navigation