Skip to main content

Advertisement

Log in

Preparation and characterization of temperature-responsive magnetic composite particles for multi-modal cancer therapy

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

The temperature-responsive magnetic composite particles were synthesized by emulsion-free polymerization of N-isopropylacrylamide (NIPAAm) and acrylamide (Am) in the presence of oleic acid-modified Fe3O4 nanoparticles. The magnetic properties and heat generation ability of the composite particles were characterized. Furthermore, temperature and alternating magnetic field (AMF) triggered drug release behaviors of vitamin B12-loaded composite particles were also examined. It was found that composite particles enabled drug release to be controlled through temperature changes in the neighborhood of lower critical solution temperature. Continuous application of AMF resulted in an accelerated release of the loaded drug. On the other hand, intermittent AMF application to the composite particles resulted in an “on–off”, stepwise release pattern. Longer release duration and larger overall release could be achieved by intermittent application of AMF as compared to continuous magnetic field. Such composite particles may be used for magnetic drug targeting followed by simultaneous hyperthermia and drug release.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Konishi K, Maehara T, Kamimori T, Aono H, Naohara T, Kikkawa H, Watanabe Y, Kawachi K. Heating ferrite powder with AC magnetic field for thermal coagulation therapy. J Magn Magn Mater. 2004;272–276:2428–9.

    Article  Google Scholar 

  2. Issels RD. Hyperthermia adds to chemotherapy. Eur J Cancer. 2008;44:2546–54.

    Article  CAS  Google Scholar 

  3. Itoh Y, Yamada Y, Kazaoka Y, Ishiguchi T, Honda N. Combination of chemotherapy and mild hyperthermia enhances the anti-tumor effects of cisplatin and adriamycin in human bladder cancer T24 cells in vitro. Exp Ther Med. 2010;1:319–23.

    Article  CAS  Google Scholar 

  4. Purushotham S, Chang PEJ, Rumpel H, Kee IHC, Ng RTH, Chow PKH, Tan CK, Ramanujan RV. Thermoresponsive core-shell magnetic nanoparticles for combined modalities of cancer therapy. Nanotechnology. 2009;20:305101.

    Article  CAS  Google Scholar 

  5. Moroz P, Jones SK, Gray BN. Magnetically mediated hyperthermia: current status and future directions. Int J Hyperth. 2002;18:267–84.

    Article  CAS  Google Scholar 

  6. Hergt R, Dutz S, Muller R, Zeisberger M. Magnetic particle hyperthermia: nanoparticles magnetism and materials development for cancer therapy. J Phys Condens Matter. 2006;18:2919–34.

    Article  Google Scholar 

  7. Day ES, Morton JG, West JL. Nanoparticles for thermal cancer therapy. J Biomech Eng Trans ASME. 2009;131:074001-1.

    Google Scholar 

  8. Gupta AK, Gupta M. Synthesis and surface engineering or iron oxide nanoparticles for biomedical applications. Biomaterials. 2005;26:3995–4021.

    Article  CAS  Google Scholar 

  9. Zhang XZ, Yang YY, Chung TS, Ma KX. Preparation and characterization of fast response macroporous poly(N-isopropylacrylamide) hydrogels. Langmuir. 2001;17:6094–9.

    Article  CAS  Google Scholar 

  10. Chen GH, Hoffman AS. Graft copolymers that exhibit temperature-induced phase transitions over a wide range of pH. Nature. 1995;373:49–52.

    Article  CAS  Google Scholar 

  11. Miyata T, Asami N. A reversibly-antigen-responsive hydrogel. Nature. 1999;399:766–9.

    Article  CAS  Google Scholar 

  12. Sershen SR, Westcott SL, Halas NJ, West JL. Temperature-sensitive polymer-nanoshell composites for photothermally modulated drug delivery. J Biomed Mater Res. 2000;51:293–8.

    Article  CAS  Google Scholar 

  13. Ahmad H, Rahman MA, Jalil Miah MA. Magnetic and temperature-sensitive composite polymer particles and adsorption behavior of emulsifiers and trypsin. Macromol Res. 2008;16:637–43.

    Article  CAS  Google Scholar 

  14. Shamim N, Hong L, Hidajat K, Uddin MS. Thermosensitive-polymer-coated magnetic nanoparticles: adsorption and desorption of bovine serum albumin. J Colloid Interface Sci. 2006;304:1–8.

    Article  CAS  Google Scholar 

  15. Ankareddi I, Brazel CS. Synthesis and characterization of grafted thermosensitive hydrogels for heating activated controlled release. Int J Pharm. 2007;336:241–7.

    Article  CAS  Google Scholar 

  16. Sun YB, Ding XB, Zheng ZH, Cheng X, Hu XH, Peng YX. Magnetic separation of polymer hybrid iron oxide nanoparticles triggered by temperature. Chem Commun. 2006;22:2765–7.

    Article  Google Scholar 

  17. Elaissari A, Rodrigue M, Meunier F, Herve C. Hydrophilic magnetic latex for nucleic acid extraction, purification and concentration. J Magn Magn Mater. 2001;225:127–33.

    Article  CAS  Google Scholar 

  18. Zhang J, Misra RDK. Magnetic drug-targeting carrier encapsulated with thermosensitive smart polymer: core-shell nanoparticle carrier and drug release response. Acta Biomater. 2007;3:838–50.

    Article  CAS  Google Scholar 

  19. Kohler N, Fryxell GE, Zhang MQ. A bifunctional poly(ethylene glycol) silane immobilized on metallic oxide-based nanoparticles for conjugation with cell targeting agents. J Am Chem Soc. 2004;126:7206–11.

    Article  CAS  Google Scholar 

  20. Lan Q, Liu C, Yang F, Liu SY, Xu J, Sun DJ. Synthesis of bilayer oleic acid-coated Fe3O4 nanoparticles and their application in pH-responsive Pickering emulsions. J Colloid Inter Sci. 2007;310:260–9.

    Article  CAS  Google Scholar 

  21. Sahoo Y, Pizem H, Fried T, Golodnitsky D, Burstein L, Sukenik CN, Markovich G. Alkyl phosphonate/phosphate coating on magnetic nanoparticles: a comparison with fatty acids. Langmuir. 2001;17:7907–11.

    Article  CAS  Google Scholar 

  22. Wakamatsu H, Yamamoto K, Nakao A, Aoyagi T. Preparation and characterization of temperature-responsive magnetite nanoparticles conjugated with N-isopropylacrylamide-based functional copolymer. J Magn Magn Mater. 2006;302:327–33.

    Article  CAS  Google Scholar 

  23. Vestal CR, Zhang ZJ. Synthesis and magnetic characterization of Mn and Co spinel ferrite-silica nanoparticles with tunable magnetic core. Nano Lett. 2003;3:1739–43.

    Article  CAS  Google Scholar 

  24. Pradhan P, Giri J, Samanta G, Sarma HD, Mishra KP, Bellare J, Banerjee R, Bahadur D. Comparative evaluation of heating ability and biocompatibility of different ferrite-based magnetic fluids for hyperthermia application. J Biomed Mater Res B. 2007;81B:12–22.

    Article  CAS  Google Scholar 

  25. Kuznetsov AA, Leontiev VG, Brukvin VA, Vorozhtsov GN, Kogan BY, Shlyakhtin OA, Yunin AM, Tsybin OI, Kuznetsov OA. Local radiofrequency-induced hyperthermia using CuNi nanoparticles with therapeutically suitable Curie temperature. J Magn Magn Mater. 2007;311:197–203.

    Article  CAS  Google Scholar 

  26. Prasad NK, Rathinasamy K, Panda D, Bahadur D. Tc-tuned biocompatible suspension of La0.73Sr0.27MnO3 for magnetic hyperthermia. J Biomed Mater Res B. 2008;85B:409–16.

    Article  CAS  Google Scholar 

  27. Ketlef MS, Thomas SR. Thermosensitive magnetic polymer particles as contactless controllable drug carriers. J Magn Magn Mater. 2006;302:267–71.

    Article  Google Scholar 

  28. You YZ, Hong CY, Pan CY, Wang PH. Synthesis of a dendritic core-shell nanoparticles with a temperature-sensitive shell. Adv Mater. 2004;16:1953–7.

    Article  CAS  Google Scholar 

  29. Choi SW, Zhang Y, Xia YN. A temperature-sensitive drug release system based on phase-change materials. Angew Chem Int Ed. 2010;49:7904–8.

    Article  CAS  Google Scholar 

  30. Satarkar NS, Hilt JZ. Magnetic hydrogel nanocomposites for remote controlled pulsatile drug release. J Control Rel. 2008;130:246–51.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by National Natural Science Foundation of China (No. 50702037) and the Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aihua Yao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yao, A., Chen, Q., Ai, F. et al. Preparation and characterization of temperature-responsive magnetic composite particles for multi-modal cancer therapy. J Mater Sci: Mater Med 22, 2239 (2011). https://doi.org/10.1007/s10856-011-4413-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10856-011-4413-5

Keywords

Navigation