Skip to main content

Advertisement

Log in

Epitaxial growth of the zinc oxide nanorods, their characterization and in vitro biocompatibility studies

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Here, we have synthesized Zinc Oxide (ZnO) nanorods at room temperature using zinc acetate and hexamethylenetetramine as precursors followed by characterization using X-ray diffraction (XRD), fourier transform infra red spectroscopy, scanning electron microscopy (SEM) and transmission electron microscopy. The growth of the synthesized ZnO was found to be very close to its hexagonal nature, which is confirmed by XRD. The nanorods were grown perpendicular to the long-axis and grew along the [001] direction, which is the nature of ZnO growth. The morphology of the synthesized ZnO nanorods was also confirmed by SEM. The size of the nanorod was estimated to be around 20–25 nm in diameter and approximately 50–60 nm in length. Our biocompatibility studies using synthesized ZnO showed no significant dose- or time-dependent increase in the formation of free radicals, accumulation of peroxidative products, antioxidant depletion or loss of cell viability on lung epithelial cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Moriarty P. Nanostructured materials. Rep Prog Phys. 2001;64:297–381.

    Article  CAS  Google Scholar 

  2. Nel A, Xia T, Madler L, Li N. Toxic potential of materials at the nano level. Science. 2006;311:622–7.

    Article  CAS  Google Scholar 

  3. Brumfiel G. Nanotechnology: a little knowledge. Nature. 2003;424:246–8.

    Article  CAS  Google Scholar 

  4. Goldston D. Small advances. Nature. 2007;450:1141.

    Article  CAS  Google Scholar 

  5. Nielsen GD, Roursgaard M, Jensen KA, Poulsen SS, Larsen ST. In vivo biology and toxicology of fullerenes and their derivatives. Basic Clin Pharmacol Toxicol. 2008;103:197–208.

    Article  CAS  Google Scholar 

  6. Kim W, Ng JK, Kunitake ME, Conklin BR, Yang P. Interfacing silicon nanowires with mammalian cells. J Am Chem Soc. 2007;129:7228–9.

    Article  CAS  Google Scholar 

  7. Dalby MJ, Gadegaard N, Wilkinson CDW. The response of fibroblasts to hexagonal nanotopography fabricated by electron beam lithography. J Biomed Mater Res A. 2008;84:973–9.

    Google Scholar 

  8. Hsin Y, Chen C, Huang S, Shih T, Lai P, Chueh PJ. The apoptotic effect of nanosilver is mediated by a ROS- and JNK-dependent mechanism involving the mitochondrial pathway in NIH3T3 cells. Toxicol Lett. 2008;179:130–9.

    Article  CAS  Google Scholar 

  9. Manna SK, Sarkar S, Barr J, Wise K, Barrera EV, Jejelowo O, Rice-Ficht AC, Ramesh GT. Single-walled carbon nanotube induces oxidative stress and activates nuclear transcription factor-kappaB in human keratinocytes. Nano Lett. 2005;5:1676–84.

    Article  CAS  Google Scholar 

  10. Sharma CS, Sarkar S, Periyakaruppan A, Barr J, Wise K, Thomas R, Wilson BL, Ramesh GT. Single-walled carbon nanotubes induces oxidative stress in rat lung epithelial cells. J Nanosci Nanotechnol. 2007;7:2466–72.

    Article  CAS  Google Scholar 

  11. Ravichandran P, Periyakaruppan A, Sadanandan B, Ramesh V, Hall JC, Jejelowo O, Ramesh GT. Induction of apoptosis in rat lung epithelial cells by multiwalled carbon nanotubes. J Biochem Mol Toxicol. 2009;23:333–4.

    Article  CAS  Google Scholar 

  12. Kang BS, Wang HT, Ren F, Pearton SJ, Morey TE, Dennis DM. Enzymatic glucose detection using ZnO nanorods on the gate region of AlGaN/GaN high electron mobility transistors. Appl Phys Lett. 2007;91:252103–5.

    Article  Google Scholar 

  13. Bodrumlu E. Biocompatibility of retrograde root filling materials: a review. Aust Endod J. 2008;34:30–5.

    Article  Google Scholar 

  14. Nohynek GJ, Lademann J, Ribaud C, Roberts MS. Grey goo on the skin? Nanotechnology, cosmetic and sunscreen safety. Crit Rev Toxicol. 2007;37:251–77.

    Article  CAS  Google Scholar 

  15. Yang H, Liu C, Yang D, Zhang HO, Xi Z. Comparative study of cytotoxicity, oxidative stress and genotoxicity induced by four typical nanomaterials: the role of particle size, shape and composition. J Appl Toxicol. 2009;29:69–78.

    Article  Google Scholar 

  16. Deng X, Luan Q, Chen W, Wang Y, Wu M, Zhang H, Jiao Z. Nanosized zinc oxide particles induce neural stem cell apoptosis. Nanotechnology. 2009;20:115101.

    Article  Google Scholar 

  17. Gojova A, Guo B, Kota RS, Rutledge JC, Kennedy IM, Barakat AI. Induction of inflammation in vascular endothelial cells by metal oxide nanoparticles: effects of particle composition. Environ Health Perspect. 2007;155:403–9.

    Google Scholar 

  18. Agren MS, Mirastschijski U. The release of zinc ions from and cytocompatibility of two zinc oxide dressings. J Wound Care. 2004;13:367–9.

    CAS  Google Scholar 

  19. Reddy KM, Feris K, Bell J, Wingett DG, Hanley C, Punnoose A. Selective toxicity of zinc oxide nanoparticles to prokaryotic and eukaryotic systems. Appl Phys Lett. 2007;90:213902.

    Article  Google Scholar 

  20. Jeng HA, Swanson J. Toxicity of metal oxide nanoparticles in mammalian cells. J Environ Sci Health A. 2006;41:2699–711.

    CAS  Google Scholar 

  21. Xia T, Kovochich M, Liong M, Madler L, Gilbert B, Shi H, Yeh JI, Zink JI, Nel AE. Comparison of the mechanism of toxicity of zinc oxide and cerium oxide nanoparticles based on dissolution and oxidative stress properties. ACS Nano. 2008;10:2121–34.

    Article  Google Scholar 

  22. Tang J, Yang X. An one-pot epitaxial growth method to synthesize cactus-like ZnO. Mater Lett. 2006;60:3487–91.

    Article  CAS  Google Scholar 

  23. Strom JG, Jun HW. Kinetics of hydrolysis of methenamine. J Pharm Sci. 1980;69:1261–3.

    Article  CAS  Google Scholar 

  24. Sarkar S, Sharma C, Yog R, Periakaruppan A, Jejelowo O, Thomas R, Barrera EV, Rice-Ficht AC, Wilson BL, Ramesh GT. Analysis of stress responsive genes induced by single-walled carbon nanotubes in BJ Foreskin cells. J Nanosci Nanotechnol. 2007;7:584–92.

    CAS  Google Scholar 

  25. Baluchamy S, Ravichandran P, Periyakaruppan A, Ramesh V, Hall JC, Zhang Ye, Gridley SD, Jejelowo O, Wu H, Ramesh GT. Induction of cell death through alteration of oxidants and antioxidants in lung epithelial cells exposed to high energy protons. J Biol chem. 2010;285:24769–74.

    Article  CAS  Google Scholar 

  26. Ravichandran P, Baluchamy S, Sadanandan B, Gopikrishnan R, Biradar S, Ramesh V, Hall JC, Ramesh GT. Multiwalled carbon nanotubes activate NF-кB and AP-1 signaling pathways to induce apoptosis in rat lung epithelial cells. Apoptosis. 2010;15:1507–16.

    Article  CAS  Google Scholar 

  27. Prasad V, Souza CD, Yadav D, Shaikh AJ, Vigneshwaran N. Spectroscopic characterization of zinc oxide nanorods synthesized by solid state reaction. Spectrochim Acta A Mol Biomol Spectrosc. 2006;65:173–8.

    Article  Google Scholar 

  28. Oberdörster G, Stone V, Donaldson K. Toxicology of nanoparticles: a historical perspective. Nanotoxicology. 2007;1:2–25.

    Article  Google Scholar 

  29. Lin W, Xu Y, Huang CC, Ma Y, Shannon KB, Chen DR, Huang YW. Toxicity of nano- and micro-sized ZnO particles in human lung epithelial cells. J Nanopart Res. 2009;11:25–39.

    Article  CAS  Google Scholar 

  30. Yuan JH, Chen Y, Zha HX, Song LJ, Li CY, Li JQ, Xia XH. Determination, characterization and cytotoxicity on HELF cells of ZnO nanoparticles. Colloids Surf B Biointerfaces. 2010;76:145–50.

    Article  CAS  Google Scholar 

  31. Nair S, Sasidharan A, Divya Rani VV, Menon D, Nair S, Manzoor K, Raina S. Role of size scale of ZnO nanoparticles and microparticles on toxicity toward bacteria and osteoblast cancer cells. J Mater Sci Mater Med. 2009;20:S235–41.

    Article  CAS  Google Scholar 

  32. Songa W, Zhangb J, Guoa J, Zhanga J, Dingc F, Li L, Suna Z. Role of the dissolved zinc ion and reactive oxygen species in cytotoxicity of ZnO nanoparticles. Toxicol Lett. 2010;199:389–97.

    Article  Google Scholar 

  33. Waris G, Ahsan H. Reactive oxygen species: role in the development of cancer and various chronic conditions. J Carcinogen. 2006;5:1–8.

    Article  Google Scholar 

  34. Brunner TK, Wick P, Manser P, Spohn P, Grass PN, Limbach L, Bruinink A, Stark WJ. In vitro cytotoxicity of oxide nanoparticles: comparison to asbestos, silica, and the effect of particle solubility. Environ Sci Technol. 2006;40:4374–81.

    Article  CAS  Google Scholar 

  35. Ravichandran P, Baluchamy S, Gopikrishnan R, Biradar S, Ramesh V, Goornavar V, Thomas R, Wilson BL, Jeffers R, Hall JC, Ramesh GT. Pulmonary biocompatibility assessment of inhaled single-wall and multi-wall carbon nanotubes in BALB/c mice. J Biol Chem. 2011. doi:10.1074/jbc.M111.251884.

  36. Dufour EK, Kumaravel T, Nohynek GJ, Kirkland D, Toutain H. Clastogenicity, photo-clatogenicity or pseudo-photo-clastogenicity: genotoxic effect of zinc oxide in the dark, in pre-irradiated or simultaneously irradiated Chinese hamster ovary cells. Mutat Res. 2006;607:215–24.

    CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by NASA funding NNX08BA47A: NCC-1-02038: NIH-1P20MD001822-1: NASA NSTI. This work was also supported by the NSF CREST.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Govindarajan T. Ramesh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gopikrishnan, R., Zhang, K., Ravichandran, P. et al. Epitaxial growth of the zinc oxide nanorods, their characterization and in vitro biocompatibility studies. J Mater Sci: Mater Med 22, 2301 (2011). https://doi.org/10.1007/s10856-011-4405-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10856-011-4405-5

Keywords

Navigation