Skip to main content
Log in

Influence of thermal treatment on the “in vitro” bioactivity of wollastonite materials

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

The aim of this work was to study the influence of the composition and thermal treatment of the in vitro bioactivity of wollastonite materials obtained by sol–gel method. For this purpose, gels in the system SiO2–CaO were obtained applying calcium nitrate and tetraethoxysilicate as precursors. The gels were heated to 700°C and then sintered up to 1400°C. The bioactivity of the gel-derived materials in simulated body fluid (SBF) was investigated and characterized. Additional changes in ionic concentration, using inductively couple plasma atomic emission spectroscopy (ICP-AES), were determined. The results showed that all materials obtained were bioactive and indicate that the absence of phosphorous in the material composition is not an essential requirement for the development of a Hydroxyapatite layer. The bioactivity was influenced by the thermal treatment, the different phases (glass-phase, wollastonite and pseudowollastonite) as well as the porous size. On the gel-derived materials the bioactivity decreased with the sintering temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Hench LL, Wilson JW. Surface-active biomaterials. Science. 1984;226:630–6.

    Article  CAS  Google Scholar 

  2. Gross U, Kinne R, Schmitz HJ, Strunz V. The response of bone to surface active glass/glass-ceramics. CRC Crit Rev Biocompat. 1988;4:2–16.

    Google Scholar 

  3. Bonfield W, Luklinska ZB. High-resolution electron microscopy of a bone implant interface. In: Davis JE, editor. The bone-biomaterial interface. Toronto: University of Toronto Press; 1991. p. 89–93.

    Google Scholar 

  4. Ohura K, Nakamura T, Yamamuro T, Kokubo T, Ebisawa T, Kotoura Y, Oka M. Bone-bonding ability of P2O5-free CaO SiO2 glasses. J Biomed Mater Res. 1991;25:357–65.

    Article  CAS  Google Scholar 

  5. Cao W, Hench LL. Bioactive materials. Ceram Int. 1996;22:493–507.

    Article  CAS  Google Scholar 

  6. Clèries L, Fernández-Pradas JM, Morenza JL. Bone growth on and resorption of calcium phosphate coatings obtained by pulsed laser deposition. J Biomed Mater Res. 2000;49:43–52.

    Article  Google Scholar 

  7. De Aza PN, De Aza AH, De Aza S. Crystalline bioceramic materials. Bol Soc Esp Ceram Vidrio. 2005;44(3):135–45.

    Google Scholar 

  8. De Aza PN, De Aza AH, Pena P, De Aza S. Bioactive glasses and glass-ceramics. Bol Soc Esp Ceram Vidrio. 2007;46(2):45–55.

    Google Scholar 

  9. Van Blitterswijk CA, Hesseling SC, Grote JJ, Koerten HK, de Groot K. The biocompatibility of hydroxyapatite ceramic: a study of retrieved human middle ear implants. J Biomed Mater Res. 1990;24:433–53.

    Article  Google Scholar 

  10. Buser D, Dula K, Beser U, Hirt HP, Berthold H. Localised ridge augmentation using guide bone regeneration. I. Surgical procedure in the maxilla. Int J Periodontics Restor Dent. 1993;13:29–45.

    CAS  Google Scholar 

  11. Yamamuro Y. A-W glass-ceramic: clinical applications. In: Hench LL, Wilson J, editors. An introduction to bioceramics. Singapore: World Scientific Publishing Co.; 1993. p. 89.

    Google Scholar 

  12. Negroiu G, Piticescu RM, Chitanu GC, Mihailescu IN, Zdrentu L, Miroiu M. Biocompatibility evaluation of a novel hydroxyapatite-polymer coating for medical implants (in vitro tests). J Mater Sci Mater Med. 2008;19:1537–44.

    Article  CAS  Google Scholar 

  13. Ohtsuki C, Kokubo T, Yamamuro T. Mechanism of apatite formation on CaO-SiO2-P2O5 glasses in a simulated body fluid. J Non-Cryst Solids. 1992;143:84–92.

    Article  CAS  Google Scholar 

  14. Nonami T. In vivo and in vitro testing of diopside for biomaterials. J Soc Mater Eng Resour Jpn. 1995;8(2):12–8.

    CAS  Google Scholar 

  15. De Aza PN, Luklinska ZB, Anseau M, Guitian F, De Aza S. Bioactivity of pseudowollastonite in human saliva. J Dent. 1999;27:107–13.

    Article  Google Scholar 

  16. Dorozhkin SV, Schmitt M, Bouler JM, Daculsi G. Chemical transformation of some biologically relevant calcium phosphates in aqueous media during a steam sterilization. J Mater Sci Mater Med. 2000;11:779–86.

    Article  CAS  Google Scholar 

  17. De Aza PN, Luklinska Z, Anseau M, Hector M, Guitian F, De Aza S. Reactivity of a wollastonite-tricalcium phosphate bioeutectic in human parotid saliva. Biomaterials. 2000;21(17):1735–41.

    Article  Google Scholar 

  18. De Aza PN, De Aza S. Bioactivities of a SiO2-CaO-ZrO2 in simulated body fluid and human parotid saliva. Key Eng Mater. 2004;254–256:75–8.

    Article  Google Scholar 

  19. De Aza PN, Luklinska Z, Anseau M. Bioactivity of diopside ceramic in human parotid saliva. J Biomed Mater Res. 2005;73B(1):54–60.

    Article  Google Scholar 

  20. Ohsawa K, Neo M, Okamoto T, Tamura K, Nakamura T. In vivo absorption of porous apatite and wollastonite containing glass ceramic. J Mater Sci Mater Med. 2004;15:859–64.

    Article  CAS  Google Scholar 

  21. Kokubo T, Kushitani H, Sakka S, Kitsugi T, Yamamuro T. Solutions able to reproduce in vivo surface-structure changes in bioactive glass-ceramics A-W. J Biomed Mater Res. 1990;24:721–34.

    Article  CAS  Google Scholar 

  22. Kamitakahara M, Yagi T, Ohtsuki C. Effect of preparation conditions on the properties of bioactive glasses for testing SBF. J Mater Sci Mater Med. 2009;20(12):2419–26.

    Google Scholar 

  23. Ohtsuki C, Aoki Y, Kokubo T, Bando Y, Neo M, Yamamuro T, Yacamura T. Characterization of apatite layer formed on bioactive glass-ceramic A-W. Bioceramics. 1992;5:87–94.

    Google Scholar 

  24. De Aza PN, Luklinska ZB, Martínez A, Anseau MR, Guitian F, De Aza S. Morphological and structural study of pseudowollastonite implants in bone. J Microsc (Oxf). 2000;197:60–7.

    Article  Google Scholar 

  25. De Aza PN, Luklinska ZB, Anseau MR, Guitian F, De Aza S. Transmission electron microscopy of the interface between bone and pseudowollastonite implant. J Microsc (Oxf). 2001;201:33–43.

    Article  Google Scholar 

  26. De Aza PN, Luklinska Z, Santos C, Guitian F, De Aza S. Mechanism of bone-like apatite formation on a bioactive implant in vivo. Biomaterials. 2003;24:1437–45.

    Article  Google Scholar 

  27. De Aza PN, Guitian F, De Aza S. Bioactivity of wollastonite ceramics: in vitro evaluation. Scripta Metall Mater. 1994;31:1001–5.

    Article  Google Scholar 

  28. De Aza PN, Guitian F, De Aza S. Polycrystalline wollastonite ceramics. Biomaterials free of P2O5. In: Vincenzini P, editor. Advances in science and technology. vol. 12. Materials in clinical application. Faenza: Techna Srl; 1995. p. 19–27.

    Google Scholar 

  29. De Aza PN, Luklinska Z. Efecto de la microestructura sobre la bioactividad de dos materiales vitroceramicos del sistema CaSiO3-ZrO2. Bol Soc Esp Ceram Vidrio. 2003;42(2):101–6.

    Google Scholar 

  30. De Aza PN, Luklinska Z. Effect of the glass-ceramic microstructure on its in vitro bioactivity. J Mater Sci Mater Med. 2003;14(10):891–8.

    Article  Google Scholar 

  31. De Aza PN, Fernandez-Pradas JM, Serra P. In vitro bioactivity of laser ablation pseudowollastonite coating. Biomaterials. 2004;25:1983–90.

    Article  Google Scholar 

  32. Alemany MI, Velásquez P, de la Casa-Lillo MA, De Aza PN. Effect of materials’ processing methods on the “in vitro” bioactivity of wollastonite glass-ceramic materials. J Non-Cryst Solids. 2005;351:1716–26.

    Article  CAS  Google Scholar 

  33. Kokubo T, Ito S, Huang T, Hayashi T, Sakka S, Kitsugi T, Kitsugi T, Yamamuro T. Ca, P-rich layer formed on high-strength bioactive glass-ceramic A-W. J Biomed Mater Res. 1990;24:331–43.

    Article  CAS  Google Scholar 

  34. Oyane A, Kim HM, Furuya T, Kokubo T, Miyazaki T, Nakamura T. Preparation and assessment of revised simulated body fluids. J Biomed Mater Res. 2003;65A:188–95.

    Article  CAS  Google Scholar 

  35. Oyane A, Onuma K, Ito A, Kim HM, Kokubo T, Nakamura T. Formation and growth of clusters in conventional and new kinds of simulated body fluids. J Biomed Mater Res. 2003;64A:339–48.

    Article  CAS  Google Scholar 

  36. Takadama H, Hashimoto M, Mizuno M, Kokubo T. Round-robin test of SBF for in vitro measurement of apatite-forming ability of synthetic materials. Phosphorus Res Bull. 2004;17:119–25.

    CAS  Google Scholar 

  37. Dufrane D, Delloye C, McKay I, De Aza PN, De Aza S, Shneider YJ, Anseau M. Indirect cytotoxicity evaluation of pseudowollastonite. J Mater Sci Mater Med. 2003;14(1):33–8.

    Article  CAS  Google Scholar 

  38. Sarmento C, Luklinska ZB, Brown L, Anseau M, De Aza S, De Aza PN, Hughes SF, McKay IJ. The in vitro behaviour of osteoblastic cell cultured in the presence of pseudowollastonite ceramic. J Biomed Mater Res. 2004;69A(2):351–8.

    Article  CAS  Google Scholar 

  39. Hench LL, Spinter RJ, Allen WC, Greenlee TK Jr. Bonding mechanisms at the interface of ceramic prosthetic materials. J Biomed Mater Res. 1971;2:117–41.

    Article  Google Scholar 

  40. Kitsugi T, Nakamura T, Yamamuro T, Kokubo T, Shibuya T, Takagi M. SEM-EPMA observation of three types of apatite containing glass ceramics implanted in bone: the variance of a Ca, P-rich layer. J Biomed Mater Res. 1987;21:1255–71.

    Article  CAS  Google Scholar 

  41. Ebisawa T, Kokubo T, Ohura K, Yamamuro T. Bioactivity of CaO SiO2-based glasses: in vitro evaluation. J Mater Sci Mater Med. 1990;1(4):239–44.

    Article  CAS  Google Scholar 

  42. Kokubo T, Ito S, Sakka S, Yamamuro T. Formation of a high-strength bioactive glass-ceramic in the system MgO-CaO-SiO2-P2O5. J Mater Sci. 1986;21:536–40.

    Article  CAS  Google Scholar 

  43. Eriksson G, Wu P, Blander M, Pelton AD. Critical evaluation and optimisation of the thermodynamic properties and phase diagrams of the MnO-SiO2 and CaO-SiO2 systems. Can Metall Q. 1994;33:13–21.

    CAS  Google Scholar 

  44. Pereira MM, Clark AE, Hench LL. Calcium-phosphate formation on sol-gel derived bioactive glasses in vitro. J Biomed Mater Res. 1994;28(6):693–8.

    Article  CAS  Google Scholar 

  45. Pereira MM, Clark AE, Hench LL. Effect of texture on the rate of HA formation on gel-silica surface. J Am Ceram Soc. 1995;78(9):2463–8.

    Article  CAS  Google Scholar 

  46. Ortega-Lara W, Cortés-Hernandez DA, Best S, Brooks R, Bretado-Aragón L, Rentería-Zamarrón D. In vitro bioactivity of wollastonite-titania materials obtained by sol-gel method or solid state reaction. J Sol-Gel Sci Technol. 2008;48:362–8.

    Article  CAS  Google Scholar 

  47. Izquierdo-Barba I, Vallet-Regi M. In vitro calcium phosphate layer formation on sol-gel glasses on the CaO-SiO2 system. J Biomed Mater Res. 1999;47:243–50.

    Article  CAS  Google Scholar 

  48. Laczka M, Cholewa K, Laczka-Osyczka A. Gel derived powders of CaO-P2O5-SiO2 system as a starting material to production of bioactive ceramics. J Alloys Compd. 1997;248:42–51.

    Article  CAS  Google Scholar 

  49. Lowell S, Shields JE. Powder surface area and porosity. London: Chapman and Hall; 1984.

    Google Scholar 

  50. Duval C. Inorganic thermogravimetric analysis. New York: Elsevier; 1963. p. 274.

    Google Scholar 

  51. Sing KSW, Everet DH, Haul RAW. Reporting physisorption data for gas/solid systems. Pure Appl Chem. 1985;57:603–19.

    Article  CAS  Google Scholar 

  52. Kokubo T. Surface chemistry of bioactive glass-ceramics. J Non-Cryst Solids. 1990;120:138–51.

    Article  CAS  Google Scholar 

  53. Liu DM. Bioactive glass-ceramic: formation, characterization and bioactivity. Mater Chem Phys. 1994;36:294–303.

    Article  CAS  Google Scholar 

  54. Neuman W, Neuman M. The chemical dynamics of bone mineral. Chicago: University of Chicago; 1958. p. 34.

    Google Scholar 

  55. Li R, Clark AE, Hench LL. Effects of structure and surface area on bioactive powders by the sol-gel process. In: Hench LL, West JK, editors. Chemical processing of advanced materials. New York: Wiley; 1992. p. 627–34.

    Google Scholar 

  56. Padilla S, Roman J, Carenas A, Vallet-Regi M. The influence of the phosphorus content on the bioactivity of sol-gel glass ceramics. Biomaterials. 2005;26:475–83.

    Article  CAS  Google Scholar 

Download references

Acknowledgment

Part of this work was supported by CICYT under project no. MAT2006-12749-C02-02.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miguel A. de la Casa-Lillo.

About this article

Cite this article

de la Casa-Lillo, M.A., Velásquez, P. & De Aza, P.N. Influence of thermal treatment on the “in vitro” bioactivity of wollastonite materials. J Mater Sci: Mater Med 22, 907–915 (2011). https://doi.org/10.1007/s10856-011-4254-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-011-4254-2

Keywords

Navigation