Skip to main content

Advertisement

Log in

Surface modification of Ti–6Al–4V alloy for biomineralization and specific biological response: Part I, inorganic modification

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Titanium and its alloys represent the gold standard for orthopaedic and dental prosthetic devices, because of their good mechanical properties and biocompatibility. Recent research has been focused on surface treatments designed to promote their rapid osteointegration also in case of poor bone quality. A new surface treatment has been investigated in this research work, in order to improve tissue integration of titanium based implants. The surface treatment is able to induce a bioactive behaviour, without the introduction of a coating, and preserving mechanical properties of Ti6Al4V substrates (fatigue resistance). The application of the proposed technique results in a complex surface topography, characterized by the combination of a micro-roughness and a nanotexture, which can be coupled with the conventional macro-roughness induced by blasting. Modified metallic surfaces are rich in hydroxyls groups: this feature is extremely important for inorganic bioactivity (in vitro and in vivo apatite precipitation) and also for further functionalization procedures (grafting of biomolecules). Modified Ti6Al4V induced hydroxyapatite precipitation after 15 days soaking in simulated body fluid (SBF). The process was optimised in order to not induce cracks or damages on the surface. The surface oxide layer presents high scratch resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Pietrabissa R . I materiali metallici. In: Pietrabissa R. Biomateriali per protesi e organi artificiali Bologna: Patron Editore; 1996. pp. 163–210.

  2. Xiao S-J, Kenausis G, Textor M. Biochemical modification of titanium surfaces. In: Berunette DM, Tengvall P, Textor M, Thomsen P, editors. Titanium in medicine. Berlin: Springler-Verlag; 2001. p. 417–53.

    Google Scholar 

  3. Ratner BD. Replacing and renewing: synthetic materials, biomimetics, and tissue engineering in implant dentistry. J Dent Educ. 2001;65:1340–7.

    CAS  Google Scholar 

  4. Lausmaa J. Mechanical, thermal, chemical and electrochemical surface treatment of titanium. In: Berunette DM, Tengvall P, Textor M, Thomsen P, editors. Titanium in medicine. Berlin: Springler-Verlag; 2001. p. 231–56.

    Google Scholar 

  5. De Jonge LT, Leeuwenburgh SCG, Wolke JGC, Jansen JA. Organic–inorganic surface modifications for titanium implant surfaces. Pharm Res. 2008;25:2357–69.

    Article  CAS  Google Scholar 

  6. Rizzi G, Scrivani A, Fini M, Giardino R. Biomedical coatings to improve the tissue–biomaterial interface. Int J Artif Organs. 2004;27:649–57.

    CAS  Google Scholar 

  7. Kokubo T. Formation of biologically active bone-like apatite on metals and polymers by a biomimetic process. Thermochim Acta. 1996;280–281:479–90.

    Article  Google Scholar 

  8. Kokubo T. Apatite formation on surfaces of ceramics metals and polymers in body environment. Acta Mater. 1998;46:2519–27.

    Article  CAS  Google Scholar 

  9. Nishiguchi S, Nakamura T, Kobayashi M, Kim HM, Miyaji F, Kokubo T. The effect of heat treatment on bone-bonding ability of alkali-treated titanium. Biomaterials. 1999;20:491–500.

    Article  CAS  Google Scholar 

  10. Kokubo T, Matsushita T, Takadama H. Titania-based bioactive materials. J Eur Ceram Soc. 2007;27:1553–8.

    Article  CAS  Google Scholar 

  11. Wang XX, Hayakawa S, Tsuru K, Osaka A. Improvement of bioactivity of H2O2/TaCl5-treated titanium after subsequent heat treatments. J Biomed Mater Res. 2000;52:171–6.

    Article  CAS  Google Scholar 

  12. Kaneko S, Tsuru K, Hayakawa S, Takemoto S, Ohtsuki C, Ozaki T, Inoue H, Osaka A. In vivo evaluation of bone-bonding of titanium metal chemically treated with hydrogen peroxide solution containing tantalum chloride. Biomaterials. 2001;22:875–81.

    Article  CAS  Google Scholar 

  13. Wang XX, Hayakawa S, Tsuru K, Osaka A. Bioactive titania gel layers formed by chemical treatment of Ti substrate with H2O2/HCl solution. Biomaterials. 2002;23:1353–7.

    Article  CAS  Google Scholar 

  14. Xiao F, Tsuru K, Hayakawa S, Osaka A. In vitro apatite deposition on titania film derived from chemical treatment of Ti substrates with oxysulfate solution containing hydrogen peroxide at low temperature. Thin Solid Films. 2003;441:271–6.

    Article  CAS  Google Scholar 

  15. Hayakawa S, Tsuru K, Osaka A. Low-temperature preparation of anatase and rutile layers on titanium substrates and their ability to induce in vitro apatite deposition. J Am Ceram Soc. 2004;87:1635–42.

    Article  Google Scholar 

  16. Spriano S, Bronzoni M, Vernè E, Maina G, Bergo V, Windler M. Characterization of surface modified Ti–6Al–7Nb alloy. J Mater Sci Mater Med. 2005;16:301–12.

    Article  CAS  Google Scholar 

  17. Spriano S, Vernè E, Ferraris S. Multifunctional titanium surfaces for bone integration, Patent no. EP2214732 (TO2007A000719).

  18. Ferraris S, Spriano S, Bianchi CL, Cassinelli C, Vernè E. Surface modification of Ti–6Al–4V alloy for biomineralization and specific biological response: Part II, alkaline phosphatase grafting. J Mater Sci Mater Med. (Submitted)

  19. Spriano S, Ferraris S, Bianchi CL, Cassinelli C, Torricelli P, Fini M, Rimondini L, Giardino R. Synergistic effect between inorganic and biological bioactivity of modified titanium surfaces. Mater Sci Res J. 2009;3:203–22.

    Google Scholar 

  20. Kumar PM, Badrinarayanan S, Sastry M. Nanocrystalline TiO2 studied by optical, FTIR and X-ray photoelectron spectroscopy: correlation to presence of surface states. Thin Solid Films. 2000;358:122–30.

    Article  CAS  Google Scholar 

  21. Gora-Marek K, Datka J. IR studies of OH groups in mesoporous aluminosilicates. Appl Catal A. 2006;302:104–9.

    Article  CAS  Google Scholar 

  22. European Standard prEN1071-3:2000:E. Advanced technical ceramics—methods of test for ceramic coatings—Part 3: determination of adhesion and other mechanical failure modes by a scratch test. Brussels, Belgium: CEN Management Centre.

  23. Kokubo T, Takadama H. How useful is SBF in predicting in vivo bone bioactivity. Biomaterials. 2006;27:2907–15.

    Article  CAS  Google Scholar 

  24. Boyan BD, Dean DD, Lohmann CH, Cochran DL, Sylvia VL, Schwartz Z. The titanium–bone cell interface in vitro: the role of the surface in promoting osteointegration. In: Brunette DM, Tengvall P, Textor M, Thomsen P, editors. Titanium in medicine. Berlin: Springler-Verlag; 2001. p. 561–85.

    Google Scholar 

  25. Boyan BD, Hummert TW, Dean DD, Schwartz Z. Role of material surfaces in regulating bone and cartilage cell response. Biomaterials. 1996;17:137–46.

    Article  CAS  Google Scholar 

  26. Sutter EMM, Goetz-Grandmont GJ. The behaviour of titanium in nitric-hydrofluoric acid solutions. Corros Sci. 1990;30:461–76.

    Article  CAS  Google Scholar 

  27. Tengvall P, Elwing H, Lundstrom I. Titanium gel made from metallic titanium and hydrogen peroxide. J Colloid Interface Sci. 1989;130:405–13.

    Article  CAS  Google Scholar 

  28. Mao C, Li H, Cui F, Ma C, Feng Q. Oriented growth of phosphates on polycrystalline titanium in a process mimicking biomineralization. J Cryst Growth. 1999;206:308–21.

    Article  CAS  Google Scholar 

  29. Zinger O, Zhao G, Schwartz Z, Simpson J, Wieland M, Landolt D, Boyan B. Differential regulation of osteoblasts by substrate microstructural features. Biomaterials. 2005;26:1837–47.

    Google Scholar 

  30. Anselme K, Bigerelle M, Noel B, Dufresne E, Judas D, Iost A, Hardouin P. Qualitative and quantitative study of human osteoblast adhesion on materials with various surface roughness. J Biomed Mater Res. 2000;49:155–66.

    Article  CAS  Google Scholar 

  31. Tambasco de Oliveira P, Nanci A. Nanotexturing of titanium-based surfaces upregulates expression of bone sialoprotein and osteopontin by cultured osteogenic cells. Biomaterials. 2004;25:403–13.

    Article  CAS  Google Scholar 

  32. Pattanayak DK, Kawai T, Matsushita T, Takadama H, Nakamura T, Kokubo T. Effect of HCl concentrations on apatite-forming ability of NaOH–HCl– and heat treatment titanium metal. J Mater Sci Mater Med. 2009;20:2401–11.

    Article  CAS  Google Scholar 

  33. Anselme K, Linez P, Bigerelle M, LeMaguer D, LeMaguer A, Hardouin P, Hildebrand HF, Iost A, Leroy JM. The relative influence of the topography and chemistry of Ti6Al4V surfaces on osteoblastic cell behaviour. Biomaterials. 2000;21:1567–77.

    Article  CAS  Google Scholar 

  34. Munuera G, Rives-Arnau V, Saucedo A. Photo-adsorption and photo-desorption of oxygen on highly hydroxylated TiO2 surfaces. Part 1.—role of hydroxyl groups in photo-adsorption. A. J Chem Soc Faraday Trans 1. 1979;75:736–747.

  35. Primet M, Pichat PP, Mathieu MV. Infrared study of the surface of titanium dioxides. I. Hydroxyl groups. J Phys Chem. 1971;75:1216–20.

    Article  CAS  Google Scholar 

  36. Tsyganenko AA, Filimonov VN. Infrared spectra of surface hydroxyl groups and crystalline structure of oxides. J Mol Struct. 1973;19:579–89.

    Article  CAS  Google Scholar 

  37. Busca G, Sausey H, Saur O, Lavalley JC, Lorenzelli V. FT-IR characterization of the surface acidity of different titanium dioxide anatase preparations. Appl Catal. 1985;14:245–60.

    Article  CAS  Google Scholar 

  38. Martra G. Lewis acid and base sites at the surface of microcrystalline TiO2 anatase: relationships between surface morphology and chemical behaviour. Appl Catal A. 2000;200:275–85.

    Article  CAS  Google Scholar 

  39. Textor M, Sittig C, Frauchiger V, Tosetti S. Properties and biological significance of natural oxide films on titanium and its alloys. In: Berunette DM, Tengvall P, Textor M, Thomsen P, editors. Titanium in medicine. Berlin: Springler-Verlag; 2001. p. 171–230.

    Google Scholar 

  40. Lu X, Wang Y, Yang X, Zhang Q, Zhao Z, Wenig LT, Leng Y. Spectroscopic analysis of titanium surface functional groups under various surface modification and their behaviours in vitro and in vivo. J Biomed Mater Res A. 2008;84:523–34.

    Google Scholar 

  41. Febg B, Chen JY, Qi SK, He L, Zhao JZ, Zhang X. Characterization of surface oxide films on titanium and bioactivity. J Mater Sci Mater Med. 2002;13:457–64.

    Article  Google Scholar 

  42. Vörös J, Wieland M, Taylor LR, Textor M, Brunette DM. Characterization of titanium surfaces. In: Berunette DM, Tengvall P, Textor M, Thomsen P, editors. Titanium in medicine. Berlin: Springler-Verlag; 2001. p. 87–144.

    Google Scholar 

  43. Lu X, Zhang HP, Leng Y, Fang L, Qu S, Feng B, Weng J, Huang N. The effects of hydroxyl groups on Ca adsorption on rutile surface: a first-principles study. J Mater Sci Mater Med. 2010;21:1–10.

    Article  CAS  Google Scholar 

  44. Park JW, Jang JH, Lee CS, Hanawa T. Osteoconductivity of hydrophilic microstructured titanium implants with phosphate ion chemistry. Acta Biomater. 2009;5:2311–21.

    Article  CAS  Google Scholar 

  45. Zanchetta P, Guezennec J. Surface thermodynamics of osteoblasts: relation between hydrophobicity and bone active biomaterials. Colloids Surf B. 2001;22:301–7.

    Article  CAS  Google Scholar 

  46. Chusuei CC, Goodman DW, Van Stipdonk MJ, Justes DR, Schweikert EA, Van Stipdonk MJ, Justes DR. Calcium phosphate phase identification using XPS and time-of-flight cluster SIM. Anal Chem. 1999;71:149–53.

    Article  CAS  Google Scholar 

  47. Spriano S, Ferraris S, Bianchi CL, Cassinelli C, Torricelli P, Fini M, Rimondini L, Giardino R. Bioactive titanium surfaces. In: Sanchez PN, editor. Titanium alloys: preparation, properties and applications. New York: Nova Science Publishers, Inc.; 2010. ISBN: 978-1-60876-151-7.

Download references

Acknowledgments

Regione Piemonte is acknowledged for its funding to the BIOSURF project. Dr. Chiara Manfredotti is acknowledged for AFM measurements kindly performed. Filmetrics (San Diego, CA, USA) is acknowledged for measurements by means of spectral reflectance technique.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Ferraris.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ferraris, S., Spriano, S., Pan, G. et al. Surface modification of Ti–6Al–4V alloy for biomineralization and specific biological response: Part I, inorganic modification. J Mater Sci: Mater Med 22, 533–545 (2011). https://doi.org/10.1007/s10856-011-4246-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-011-4246-2

Keywords

Navigation