Skip to main content
Log in

Na-doped β-tricalcium phosphate: physico-chemical and in vitro biological properties

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Synthetic calcium phosphate ceramics as β-tricalcium phosphate (Ca3(PO4)2; β-TCP) are currently successfully used in human bone surgery. The aim of this work was to evaluate the influence of the presence of sodium ion in β-TCP on its mechanical and biological properties. Five Na-doped-β-TCP [Ca10.5−x/2Na x (PO4)7, 0 ≤ x ≤ 1] microporous pellets were prepared via solid phase synthesis, and their physico-chemical data (lattice compacity, density, porosity, compressive strength, infrared spectra) denote an increase of the mechanical properties and a decrease of the solubility when the sodium content is raised. On the other hand, the in vitro study of MC3T3-E1 cell activity (morphology, MTS assay and ALP activity) shows that the incorporation of sodium does not modify the bioactivity of the β-TCP. These results strongly suggest that Na-doped-β-TCP appear to be good candidates for their use as bone substitutes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. LeGeros JP. Biodegradation and bioresorption of calcium phosphate ceramics. Clin Mater. 1993;14:65–88.

    Article  CAS  Google Scholar 

  2. Cavagna R, Daculsi G, Bouler J. Macroporous calcium phosphate ceramic: a prospective study of 106 cases in lumbar spinal fusion. J Long Term Eff Med Implants. 1999;9:403–12.

    CAS  Google Scholar 

  3. Ransford A, Morley T, Edgar M, Webb P, Passuti N, Chopin D, et al. Synthetic porous ceramic compared with autograft in scoliosis surgery. A prospective, randomized study of 341 patients. J Bone Joint Surg Br. 1998;80:13–8.

    Article  CAS  Google Scholar 

  4. Rey C. Calcium phosphate biomaterials and bone mineral. Differences in composition, structures and properties. Biomaterials. 1990;11:13–5.

    Article  CAS  Google Scholar 

  5. Bouler J-M, Trécant M, Delécrin J, Royer J, Passuti N, Daculsi G. Macroporous biphasic calcium phosphate ceramics: influence of five synthesis parameters on compressive strength. J Biomed Mater Res. 1996;32:603–9.

    Article  CAS  Google Scholar 

  6. Pecqueux F, Tancret F, Payraudeau N, Bouler J-M. Influence of microporosity and macroporosity on the mechanical properties of biphasic calcium phosphate bioceramics: modelling and experiment. J Eur Ceram Soc. 2010;30:819–29.

    Article  CAS  Google Scholar 

  7. Perera FH, Martinez-Vazquez FJ, Miranda P, Ortiz AL, Pajares A. Clarifying the effect of sintering conditions on the microstructure and mechanical properties of beta-tricalcium phosphate. Ceram Int. 2010;36(6):1929–35.

    Article  CAS  Google Scholar 

  8. Kawamura H, Ito A, Miyakawa S, Layrolle P, Ojima K, Ichinose N, et al. Stimulatory effect of zinc-releasing calcium phosphate implant on bone formation in rabbit femora. J Biomed Mater Res. 2000;50(2):184–90.

    Article  CAS  Google Scholar 

  9. Ito A, Kawamura H, Miyakawa S, Layrolle P, Kanzaki N, Treboux G, et al. Resorbability and solubility of zinc-containing tricalcium phosphate. J Biomed Mater Res. 2002;60:224–31.

    Article  CAS  Google Scholar 

  10. Lazoryak BI, Strunenkova TV, Golubev VN, Vovk EA, Ivanov LN. Triple phosphates of calcium, sodium and trivalent elements with whitlockite-like structure. Mater Res Bull. 1996;31(2):207–16.

    Article  CAS  Google Scholar 

  11. Obadia L, Deniard D, Alonso B, Rouillon T, Jobic S, Guicheux J, et al. Effect of sodium doping in β-tricalcium phosphate on its structure and properties. Chem Mater. 2006;18:1425–33.

    Article  CAS  Google Scholar 

  12. Tabor D. The hardness of solids. Rev Phys Technol. 1970;1:145–79.

    Article  Google Scholar 

  13. Shannon R. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Cryst A. 1976;32(5):751–67.

    Article  Google Scholar 

  14. Rodriguez-Carvajal J, Roisnel T. Fullprof.98 and WinPLOTR: New Windows 95/NT application for diffraction. Commission for powder diffraction, international union of crystallography 1998; newsletter n 20.

  15. Rodriguez-Lorenzo LM, Hart JN, Gross KA. Influence of fluorine in the synthesis of apatites. Synthesis of solid solutions of hydroxy-fluorapatite. Biomaterials. 2003;24(21):3777–85.

    Article  CAS  Google Scholar 

  16. Berar JF, Lelann P. E.S.D’s and estimated probalble error obtained in Rietveld refinement with local correlation. J Appl Cryst. 1991;24:1–5.

    Article  CAS  Google Scholar 

  17. Guicheux J, Lemonnier J, Ghayor C, Suzuki A, Palmer G, Caverzasio J. Activation of p38 mitogen-activated protein kinase and c-Jun-NH2-terminal kinase by BMP-2 and their implication in the stimulation of osteoblastic cell differentiation. J Bone Miner Res. 2003;18(11):2060–8.

    Article  CAS  Google Scholar 

  18. Suzuki A, Ghayor C, Guicheux J, Magne D, Quillard S, Kakita A, et al. Enhanced expression of the inorganic phosphate transporter Pit-1 is involved in BMP-2-induced matrix mineralization in osteoblast-like cells. J Bone Miner Res. 2006;21(5):674–83.

    Article  CAS  Google Scholar 

  19. Citeau A, Guicheux J, Vinatier C, Layrolle P, Nguyen TP, Pilet P, et al. In vitro biological effects of titanium rough surface obtained by calcium phosphate grid blasting. Biomaterials. 2005;26(2):157–65.

    Article  CAS  Google Scholar 

  20. Julien M, Khairoun I, LeGeros RZ, Delplace S, Pilet P, Weiss P, et al. Physico-chemical–mechanical and in vitro biological properties of calcium phosphate cements with doped amorphous calcium phosphates. Biomaterials. 2007;28:956–65.

    Article  CAS  Google Scholar 

  21. Relic B, Guicheux J, Mezin F, Lubberts E, Togninalli D, Garcia I, et al. Il-4 and IL-13, but not IL-10, protect human synoviocytes from apoptosis. J Immunol. 2001;166(4):2775–82.

    CAS  Google Scholar 

  22. Verron E, Masson M, Khoshniat S, Duplomb L, Wittrant Y, Baud’huin M, et al. Gallium modulates osteoclastic bone resorption in vitro without affecting osteoblasts. Br J Pharmacol. 2010;159:1681–92.

    Article  CAS  Google Scholar 

  23. Quillard S, Obadia L, Deniard P, Bujoli B, Bouler JM. Vibrational properties of sodium substituted β-tricalcium phosphate. Key Eng Mater. 2008;361–363:75–8.

    Article  Google Scholar 

  24. Rey C, Shimizu M, Collins B, Glimcher MJ. Resolution-enhanced Fourier transform infrared spectroscopy study of the environment of phosphate ions in the early deposits of a solid phase of calcium-phosphate in bone and enamel, and their evolution with age. I: Investigations in the ν4 PO4 domain. Calcif Tissue Int. 1990;46:384–94.

    Article  CAS  Google Scholar 

  25. Rey C, Shimizu M, Collins B, Glimcher MJ. Resolution-enhanced Fourier transform infrared spectroscopy study of the environment of phosphate ions in the early deposits of a solid phase of calcium-phosphate in bone and enamel, and their evolution with age. I: Investigations in the ν3 PO4 domain. Calcif Tissue Int. 1991;49:383–8.

    Article  CAS  Google Scholar 

  26. Elliott JC. Structure and chemistry of the apatites and other calcium phosphates. Studies in inorganic chemistry. Amsterdam: Elsevier; 1994. p. 389.

    Google Scholar 

  27. LeGeros RZ. Calcium phosphate in oral biology and medicine. In: Myers HM, editor. Monograph in oral science. Switzerland: Karger; 1991. p. 1–201.

    Google Scholar 

  28. Collin I, Lamy B, Gauthier O, Bouler J-M. Improvement of macroporous biphasic phosphocalcic ceramics for the filling of bone defects. ITBM-RBM. 2005;26(4):247–8.

    Article  Google Scholar 

  29. Gauthier O, Muller R, von Stechow D, Lamy B, Weiss P, Bouler J-M, et al. In vivo bone regeneration with injectable calcium phosphate biomaterial: a three-dimensional micro-computed tomographic, biomechanical and SEM study. Biomaterials. 2005;26(27):5444–53.

    Article  CAS  Google Scholar 

  30. Anselme K. Osteoblast adhesion on biomaterials. Biomaterials. 2000;21(7):667–81.

    Article  CAS  Google Scholar 

  31. Boyan BD, Schwartz Z, Lohmann CH, Sylvia VL, Cochran DL, Dean DD, et al. Pretreatment of bone with osteoclasts affects phenotypic expression of osteoblast-like cells. J Orthop Res. 2003;21(4):638–47.

    Article  CAS  Google Scholar 

  32. Bouler J-M, Daculsi G. In vitro carbonated apatite precipitation on biphasic calcium phosphate pellets presenting various HA/-TCP ratios. Key Eng Mater. 2001;192–195:119–22.

    Article  Google Scholar 

  33. Kokubo T, Kim HM, Kawashita M, Nakamura T. Process of calcification on artificial materials. Z Kardiol. 2001;90(3):86–91.

    Google Scholar 

  34. Xavier SP, Carvalho PS, Beloti MM, Rosa AL. Response of rat bone marrow cells to commercially pure titanium submitted to different surface treatments. J Dent. 2003;31(3):173–80.

    Article  CAS  Google Scholar 

  35. Chesmel KD, Clark CC, Brighton CT, Black J. Cellular responses to chemical and morphologic aspects of biomaterial surfaces. II. The biosynthetic and migratory response of bone cell populations. J Biomed Mater Res. 1995;29(9):1101–10.

    Article  CAS  Google Scholar 

  36. Deligianni DD, Katsala ND, Koutsoukos PG, Missirlis YF. Effect of surface roughness of hydroxyapatite on human bone marrow cell adhesion, proliferation, differentiation and detachment strength. Biomaterials. 2001;22(1):87–96.

    Article  CAS  Google Scholar 

  37. Maeno S, Niki Y, Matsumoto H, Morioka H, Yatabe T, Funayama A, et al. The effect of calcium ion concentration on osteoblast viability, proliferation and differentiation in monolayer and 3D culture. Biomaterials. 2005;26(23):4847–55.

    Article  CAS  Google Scholar 

  38. Meleti Z, Shapiro IM, Adams CS. Inorganic phosphate induces apoptosis of osteoblast-like cells in culture. Bone. 2000;27(3):359–66.

    Article  CAS  Google Scholar 

  39. Farley JR, Hall SL, Tanner MA, Wergedal JE. Specific activity of skeletal alkaline phosphatase in human osteoblast-line cells regulated by phosphate, phosphate esters, and phosphate analogs and release of alkaline phosphatase activity inversely regulated by calcium. J Bone Miner Res. 1994;9(4):497–508.

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This work was supported by CNRS “Programme Matériaux Nouveaux, Nouvelles Fonctionnalités”, Région Pays de Loire “Programme Biomatériaux S3” and Fondation Avenir pour la Recherche Médicale appliquée, étude ET2-321. Marion Julien received a fellowship from INSERM and region des Pays de la Loire.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Michel Bouler.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Obadia, L., Julien, M., Quillard, S. et al. Na-doped β-tricalcium phosphate: physico-chemical and in vitro biological properties. J Mater Sci: Mater Med 22, 593–600 (2011). https://doi.org/10.1007/s10856-010-4219-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-010-4219-x

Keywords

Navigation