Skip to main content

Advertisement

Log in

Characterization of the chemically deposited hydroxyapatite coating on a titanium substrate

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Bioactive hydroxyapatite (HA) coating on titanium (Ti) implant can be used as a drug delivery device. A controlled release of drug around the implant requires the incorporation of drug into the coating material during the coating process. HA coating was prepared using a two-step procedure in conditions suitable for simultaneous incorporation of the protein-based drug into the coating material. Monetite coating was deposited on Ti substrate in acidic condition followed by the transformation of the monetite coating to HA. X-ray diffraction (XRD) confirmed the formation of the monetite phase at the first step of the coating preparation, which was transformed into HA at the second step. Fourier transform infrared spectroscopy demonstrated typical bands of a crystallized carbonated HA with A- and B-type substitution, which was confirmed by the XRD refinement of the structural parameters. Scanning electron microscope was used to observe the morphology of monetite and HA coatings. Adhesion of the coatings was measured using a scratch tester. The critical shearing stress was found to be 84.20 ± 1.27 MPa for the monetite coating, and 44.40 ± 2.39 MPa for the HA coating.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Dawson J, Linsell L, Zondervan K, Rose P, Randall T, Carr A, et al. Epidemiology of hip and knee pain and its impact on overall health status in older adults. Rheumatology. 2004;43:497–504.

    Article  CAS  Google Scholar 

  2. Zhang W, Moskowitz RW, Nuki G, Abramson S, Altman RD, Arden N, et al. OARSI recommendations for the management of hip and knee osteoarthritis, Part I: critical appraisal of existing treatment guidelines and systematic review of current research evidence. Osteoarthr Cartil. 2007;15:981–1000.

    Article  CAS  Google Scholar 

  3. Zhang W, Moskowitz RW, Nuki G, Abramson S, Altman RD, Arden N, et al. OARSI recommendations for the management of hip and knee osteoarthritis, Part II: OARSI evidence-based, expert consensus guidelines. Osteoarthr Cartil. 2008;16:137–62.

    Article  CAS  Google Scholar 

  4. Harris WH, Sledge CB. Total hip and total knee replacement (1). N Engl J Med. 1990;323:725–31.

    Article  CAS  Google Scholar 

  5. Harris WH, Sledge CB. Total hip and total knee replacement (2). N Engl J Med. 1990;323:801–7.

    Article  CAS  Google Scholar 

  6. Niinomi M. Recent research and development in titanium alloys for biomedical applications and healthcare goods. Sci Technol Adv Mater. 2003;4:445–54.

    Article  CAS  Google Scholar 

  7. Geetha M, Singh AK, Asokamani R, Gogia AK. Ti based biomaterials, the ultimate choice for orthopaedic implants—A review. Prog Mater Sci. 2009;54:397–425.

    Article  CAS  Google Scholar 

  8. Inagaki M, Kameyama T. Phase transformation of plasma-sprayed hydroxyapatite coating with preferred crystalline orientation. Biomaterials. 2007;28:2923–31.

    Article  CAS  Google Scholar 

  9. Yang S, Man HC, Xing W, Zheng X. Adhesion strength of plasma-sprayed hydroxyapatite coatings on laser gas-nitrided pure titanium. Surf Coat Technol. 2009;203:3116–22.

    Article  CAS  Google Scholar 

  10. Mohammadi Z, Ziaei-Moayyed AA, Mesgar AS-M. Adhesive and cohesive properties by indentation method of plasma-sprayed hydroxyapatite coatings. Appl Surf Sci. 2007;253:4960–5.

    Article  CAS  Google Scholar 

  11. Ramaswamy Y, Wu C, Zreiqat H. Orthopedic coating materials: considerations and applications. Expert Rev Med Devices. 2009;6:423–30.

    Article  CAS  Google Scholar 

  12. Kurtz SM, Lau E, Ong K, Zhao K, Kelly M, Bozic KJ. Future young patient demand for primary and revision joint replacement: national projections from 2010 to 2030. Clin Orthop Relat Res. 2009;467:2606–12.

    Article  Google Scholar 

  13. Wan T, Aoki H, Hikawa J, Lee JH. RF-magnetron sputtering technique for producing hydroxyapatite coating film on various substrates. Biomed Mater Eng. 2007;17:291–7.

    CAS  Google Scholar 

  14. Chen F, Lam WM, Lin CJ, Qiu GX, Wu ZH, Luk KDK, et al. Biocompatibility of electrophoretical deposition of nanostructured hydroxyapatite coating on roughen titanium surface: in vitro evaluation using mesenchymal stem cells. J Biomed Mater Res B Appl Biomater. 2007;82B:183–91.

    Article  CAS  Google Scholar 

  15. Yan Y, Wolke JGC, De Ruijter A, Yubao L, Jansen JA. Growth behavior of rat bone marrow cells on RF magnetron sputtered hydroxyapatite and dicalcium pyrophosphate coatings. J Biomed Mater Res A. 2006;78A:42–9.

    Article  CAS  Google Scholar 

  16. Ohtsuka Y, Matsuura M, Chida N, Yoshinari M, Sumii T, Dérand T. Formation of hydroxyapatite coating on pure titanium substrates by ion beam dynamic mixing. Surf Coat Technol. 1994;65:224–30.

    Article  CAS  Google Scholar 

  17. Yoshinari M, Ohtsuka Y, Dérand T. Thin hydroxyapatite coating produced by the ion beam dynamic mixing method. Biomaterials. 1994;15:529–35.

    Article  CAS  Google Scholar 

  18. Baszkiewicz J, Krupa D, Kozubowski JA, Rajchel B, Mitura M, Barcz A, et al. Influence of the Ca- and P-enriched oxide layers produced on titanium and the Ti6Al4 V alloy by the IBAD method upon the corrosion resistance of these materials. Vacuum. 2003;70:163–7.

    Article  CAS  Google Scholar 

  19. Suda Y, Kawasaki H, Ohshima T, Nakashima S, Kawazoe S, Toma T. Hydroxyapatite coatings on titanium dioxide thin films prepared by pulsed laser deposition method. Thin Solid Films. 2006;506–507:115–9.

    Article  Google Scholar 

  20. Koch CF, Johnson S, Kumar D, Jelinek M, Chrisey DB, Doraiswamy A, et al. Pulsed laser deposition of hydroxyapatite thin films. Mater Sci Eng, C. 2007;27:484–94.

    Article  CAS  Google Scholar 

  21. Blind O, Klein LH, Dailey B, Jordan L. Characterization of hydroxyapatite films obtained by pulsed-laser deposition on Ti and Ti-6AL-4v substrates. Dent Mater. 2005;21:1017–24.

    Article  CAS  Google Scholar 

  22. Xu W, Hu W, Li MS, Wen C. Sol-gel derived hydroxyapatite/titania biocoatings on titanium substrate. Mater Lett. 2006;60:1575–8.

    Article  CAS  Google Scholar 

  23. Kim H-W, Koh Y-H, Li L-H, Lee S, Kim H-E. Hydroxyapatite coating on titanium substrate with titania buffer layer processed by sol–gel method. Biomaterials. 2004;25:2533–8.

    Article  CAS  Google Scholar 

  24. Ün S, Durucan C. Preparation of hydroxyapatite-titania hybrid coatings on titanium alloy. J Biomed Mater Res B Appl Biomater. 2009;90B:574–83.

    Article  Google Scholar 

  25. Kim D-Y, Kim M, Kim H-E, Koh Y-H, Kim H-W, Jang J-H. Formation of hydroxyapatite within porous TiO2 layer by micro-arc oxidation coupled with electrophoretic deposition. Acta Biomater. 2009;5:2196–205.

    Article  CAS  Google Scholar 

  26. Djošić MS, Mišković-Stanković VB, Kačarević-Popović ZM, Jokić BM, Bibić N, Mitrić M, et al. Electrochemical synthesis of nanosized monetite powder and its electrophoretic deposition on titanium. Colloids Surf A. 2009;341:110–7.

    Article  Google Scholar 

  27. Rohanizadeh R, Al-Sadeq M, LeGeros RZ. Preparation of different forms of titanium oxide on titanium surface: effects on apatite deposition. J Biomed Mater Res A. 2004;71A:343–52.

    Article  CAS  Google Scholar 

  28. Rohanizadeh R, LeGeros RZ, Harsono M, Bendavid A. Adherent apatite coating on titanium substrate using chemical deposition. J Biomed Mater Res A. 2005;72A:428–38.

    Article  CAS  Google Scholar 

  29. Rohanizadeh R, LeGeros RZ. Novel method of hydroxyapatite coating on titanium using chemical deposition. Switzerland: Key Engineering Materials: Trans Tech Publications; 2008.

    Google Scholar 

  30. Le Bail A. Whole powder pattern decomposition methods and applications: a retrospection. Powder Diffr. 2005;20:316–26.

    Article  CAS  Google Scholar 

  31. Hunter BA, Hill RJ, Howard CJ. Rietica—a computer program for Rietveld analysis of fixed-wavelength X-ray and neutron powder diffraction patterns. NSW, Australia: Australian Atomic Energy Commission; 1995.

  32. ASTM International. ASTM C1624-05. Standard test method for adhesion strength and mechanical failure modes of ceramic coatings by quantitative single point scratch testing. ASTM International, West Conshohocken, PA, USA. doi:10.1520/C1624-05

  33. Oliver WC, Pharr GM. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J Mater Res. 1992;7:1564–83.

    Article  CAS  Google Scholar 

  34. Wilson RM, Elliott JC, Dowker SEP, Rodriguez-Lorenzo LM. Rietveld refinements and spectroscopic studies of the structure of Ca-deficient apatite. Biomaterials. 2005;26:1317–27.

    Article  CAS  Google Scholar 

  35. Teixeira S, Rodriguez MA, Pena P, De Aza AH, De Aza S, Ferraz MP, et al. Physical characterization of hydroxyapatite porous scaffolds for tissue engineering. Mater Sci Eng, C. 2009;29:1510–4.

    Article  CAS  Google Scholar 

  36. Brown PW. Phase relationships in the ternary system CaO–P2O5–H2O at 25°C. J Am Ceram Soc. 1992;75:17–22.

    Article  CAS  Google Scholar 

  37. Schmidt J, Vogelsberger W. Aqueous long-term solubility of titania nanoparticles and titanium(IV) hydrolysis in a sodium chloride system studied by adsorptive stripping voltammetry. J Solution Chem. 2009;38:1267–82.

    Article  CAS  Google Scholar 

  38. Dutta PK, Ray AK, Sharma VK, Millero FJ. Adsorption of arsenate and arsenite on titanium dioxide suspensions. J Colloid Interface Sci. 2004;278:270–5.

    Article  CAS  Google Scholar 

  39. Kokubo T, Pattanayak DK, Matsushita T, Takadama H, Nakamura T. Positively charged bioactive titanium oxide formed on Ti metal by acid and heat treatments. Bioceramics 22: The 22nd International Simposium on Ceramics in Medicine; 2009. pp. 249–52.

  40. Varela LM, García M, Mosquera V. Exact mean-field theory of ionic solutions: non-Debye screening. Phys Rep. 2003;382:1–111.

    Article  CAS  Google Scholar 

  41. Prado Da Silva MH, Lima JHC, Soares GA, Elias CN, de Andrade MC, Best SM, et al. Transformation of monetite to hydroxyapatite in bioactive coatings on titanium. Surf Coat Technol. 2001;137:270–6.

    Article  CAS  Google Scholar 

  42. Ma M-G, Zhu Y-J, Chang J. Monetite formed in mixed solvents of water and ethylene glycol and its transformation to hydroxyapatite. J Phys Chem B. 2006;110:14226–30.

    Article  CAS  Google Scholar 

  43. Zavgorodniy AV, Rohanizadeh R, Bulcock S, Swain MV. Ultrastructural observations and growth of occluding crystals in carious dentine. Acta Biomater. 2008;4:1427–39.

    Article  CAS  Google Scholar 

  44. Gibson IR, Best SM, Bonfield W. Chemical characterization of silicon-substituted hydroxyapatite. J Biomed Mater Res. 1999;44:422–8.

    Article  CAS  Google Scholar 

  45. Barralet J, Best S, Bonfield W. Carbonate substitution in precipitated hydroxyapatite: an investigation into the effects of reaction temperature and bicarbonate ion concentration. J Biomed Mater Res. 1998;41:79–86.

    Article  CAS  Google Scholar 

  46. Benjamin P, Weaver C. Measurement of adhesion of thin films. Proc R Soc A. 1960;254:163–76.

    Article  CAS  Google Scholar 

  47. Bull SJ, Berasetegui EG. An overview of the potential of quantitative coating adhesion measurement by scratch testing. Tribol Int. 2006;39:99–114.

    Article  CAS  Google Scholar 

  48. Weaver C. Adhesion of thin films. J Vac Sci Technol. 1975;12:18–25.

    Article  CAS  Google Scholar 

  49. Cui X, Kim H-M, Kawashita M, Wang L, Xiong T, Kokubo T, et al. Preparation of bioactive titania films on titanium metal via anodic oxidation. Dent Mater. 2009;25:80–6.

    Article  CAS  Google Scholar 

  50. Kokubo T, Miyaji F, Kim H-M, Nakamura T. Spontaneous formation of bonelike apatite layer on chemically treated titanium metals. J Am Ceram Soc. 1996;79:1127–9.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by ARC Discovery Grant DP0986230. The assistance from the Electron Microscope Unit, The University of Sydney is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander V. Zavgorodniy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zavgorodniy, A.V., Borrero-López, O., Hoffman, M. et al. Characterization of the chemically deposited hydroxyapatite coating on a titanium substrate. J Mater Sci: Mater Med 22, 1–9 (2011). https://doi.org/10.1007/s10856-010-4179-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-010-4179-1

Keywords

Navigation