Skip to main content
Log in

Lens epithelial cell response to atmospheric pressure plasma modified poly(methylmethacrylate) surfaces

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Selective control of cellular response to polymeric biomaterials is an important consideration for many ocular implant applications. In particular, there is often a need to have one surface of an ophthalmic implant capable of promoting cell attachment while the other needs to be resistant to this effect. In this study, an atmospheric pressure dielectric barrier discharge (DBD) has been used to modify the surface region of poly(methyl methacrylate) (PMMA), a well established ocular biomaterial, with the aim of promoting a controlled response to human lens epithelial cells (LEC) cultured thereon. The DBD plasma discharge environment has also been employed to chemically graft a layer of poly(ethylene glycol) methyl ether methacrylate (PEGMA) onto the PMMA and the response to LEC likewise determined. Two different molecular weights of PEGMA, namely 1000 and 2000 MW were used in these experiments. The LEC response to DBD treated polystyrene (PS) samples has also been examined as a positive control and to help to further elucidate the nature of the modified surfaces. The LEC adhered and proliferated readily on the DBD treated PMMA and PS surfaces when compared to the pristine polymer samples which showed little or no cell response. The PMMA and PS surfaces that had been DBD grafted with the PEGMA1000 layer were found to have some adhered cells. However, on closer inspection, these cells were clearly on the verge of detaching. In the case of the PEGMA2000 grafted surfaces no cells were observed indicating that the higher molecular weight PEGMA has been able to attain a surface conformation that is capable of resisting cell attachment in vitro.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Lloyd AW, Faragher RG, Denyer SP. Ocular biomaterials and implants. Biomaterials. 2001;22(8):769–85.

    Article  CAS  PubMed  Google Scholar 

  2. Ilhan-Sarac O, Akpek EK. Current concepts and techniques in keratoprosthesis. Curr Opin Ophthalmol. 2005;16(4):246–50.

    Article  PubMed  Google Scholar 

  3. Hicks CR, Fitton JH, Chirila TV, Crawford GJ, Constable IJ. Keratoprostheses: advancing toward a true artificial cornea. Surv Ophthalmol. 1997;42(2):175–89.

    Article  CAS  PubMed  Google Scholar 

  4. Patel S, Thakar RG, Wong J, McLeod SD, Li S. Control of cell adhesion on poly(methyl methacrylate). Biomaterials. 2006;27(14):2890–7.

    Article  CAS  PubMed  Google Scholar 

  5. Kim MK, Park IS, Park HD, Wee WR, Lee JH, Park KD, et al. Effect of poly(ethylene glycol) graft polymerization of poly(methyl methacrylate) on cell adhesion. In vitro and in vivo study. J Cataract Refract Surg. 2001;27(5):766–74.

    Article  CAS  PubMed  Google Scholar 

  6. Spalton DJ. Posterior capsular opacification after cataract surgery. Eye. 1999;13(Pt 3b):489–92.

    PubMed  Google Scholar 

  7. Nishi O. Posterior capsule opacification. Part 1. Experimental investigations. J Cataract Refract Surg. 1999;25(1):106–17.

    Article  CAS  PubMed  Google Scholar 

  8. Schauersberger J, Amon A, Kruger A, Abela C, Schild G, Kolodjaschna J. Lens epithelial cell outgrowth on 3 types of intraocular lenses. J Cataract Refract Surg. 2001;27(6):850–4.

    Article  CAS  PubMed  Google Scholar 

  9. Yuen C, Williams R, Batterbury M, Grierson I. Modification of the surface properties of a lens material to influence posterior capsular opacification. Graefes Arch Clin Exp Ophthalmol. 2006;34(6):568–74.

    Google Scholar 

  10. Tognetto D, Toto L, Sanguinetti G, Cecchini P, Vattovani O, Filacorda S, et al. Lens epithelial cell reaction after implantation of different intraocular lens materials: two-year results of a randomized prospective trial. Ophthalmology. 2003;110(10):1935–41.

    Article  PubMed  Google Scholar 

  11. Doan KT, Olson RJ, Mamalis N. Survey of intraocular lens material and design. Curr Opin Ophthalmol. 2002;13(1):24–9.

    Article  PubMed  Google Scholar 

  12. Matsushima H, Iwamoto H, Mukai K, Katsuki Y, Nagata M, Senoo T. Preventing secondary cataract and anterior capsule contraction by modification of intraocular lenses. Expert Rev Med Devices. 2008;5(2):197–207.

    Article  PubMed  Google Scholar 

  13. Lampin M, Warocquier C, Legris C, Degrange M, Sigot-Luizard MF. Correlation between substratum roughness and wettability, cell adhesion, and cell migration. J Biomed Mater Res. 1997;36(1):99–108.

    Article  CAS  PubMed  Google Scholar 

  14. Mitchell SA, Davidson MR, Bradley RH. Improved cellular adhesion to acetone plasma modified polystyrene surfaces. J Colloid Interface Sci. 2005;281(1):122–9.

    Article  CAS  PubMed  Google Scholar 

  15. Chu PK, Chen JY, Wang LP, Huang N. Plasma-surface modification of biomaterials. Mater Sci Eng R. 2002;36(5-6):143–206.

    Article  Google Scholar 

  16. Hubbell JA. Surface treatment of polymers for biocompatibility. Annu Rev Mater Sci. 1996;26:365–94.

    Article  ADS  Google Scholar 

  17. Kingshott P, Thissen H, Griesser HJ. Effects of cloud-point grafting, chain length, and density of PEG layers on competitive adsorption of ocular proteins. Biomaterials. 2002;23(9):2043–56.

    Article  CAS  PubMed  Google Scholar 

  18. Lee JH, Lee HB, Andrade JD. Blood compatibility of polyethylene oxide surfaces. Prog Polym Sci. 1995;20(6):1043–79.

    Article  CAS  Google Scholar 

  19. Harris JM. Poly(ethylene glycol) chemistry. New York: Plenum; 1992.

    Google Scholar 

  20. Kingshott P, Griesser HJ. Surfaces that resist bioadhesion. Curr Opin Solid State Mater Sci. 1999;4(4):403–12.

    Article  CAS  Google Scholar 

  21. Michel R, Pasche S, Textor M, Castner DG. Influence of PEG architecture on protein adsorption and conformation. Langmuir. 2005;21(26):12327–32.

    Article  CAS  PubMed  Google Scholar 

  22. Chen H, Zhang Z, Chen Y, Brook MA, Sheardown H. Protein repellant silicone surfaces by covalent immobilization of poly(ethylene oxide). Biomaterials. 2005;26(15):2391–9.

    Article  CAS  PubMed  Google Scholar 

  23. D’Sa RA, Meenan BJ. Chemical grafting of poly(ethylene glycol) methyl ether methacrylate onto polymer surfaces by atmospheric pressure plasma processing. Langmuir. 2010;24(3):1894–903.

    Article  Google Scholar 

  24. Uyama Y, Kato K, Ikada Y. Surface modification of polymers by grafting. Adv Polym Sci. 1998;137:1–39.

    Article  CAS  Google Scholar 

  25. Kato K, Uchida E, Kang ET, Uyama Y, Ikada Y. Polymer surface with graft chains. Prog Polym Sci. 2003;28(2):209–59.

    Article  CAS  Google Scholar 

  26. Zhao B, Brittain WJ. Polymer brushes: surface-immobilized macromolecules. Prog Polym Sci. 2000;25(5):677–710.

    Article  CAS  Google Scholar 

  27. Wang P, Tan KL, Kang ET, Neoh KG. Plasma-induced immobilization of poly(ethylene glycol) onto poly(vinylidene fluoride) microporous membrane. J Memb Sci. 2002;195(1):103–14.

    Article  CAS  Google Scholar 

  28. Liu C, Brown NMD, Meenan BJ. Uniformity analysis of dielectric barrier discharge (DBD) processed polyethylene terephthalate (PET) surface. Appl Surf Sci. 2006;252(6):2297–310.

    Article  CAS  ADS  Google Scholar 

  29. Liu C, Brown NMD, Meenan BJ. Statistical analysis of the effect of dielectric barrier discharge (DBD) operating parameters on the surface processing of poly(methylmethacrylate) film. Surf Sci. 2005;575(3):273–86.

    Article  CAS  ADS  Google Scholar 

  30. Liu C, Cui N, Brown NMD, Meenan BJ. Effects of DBD plasma operating parameters on the polymer surface modification. Surf Coat Technol. 2004;185(2–3):311–20.

    Article  CAS  Google Scholar 

  31. Upadhyay DJ, Cui NY, Meenan BJ, Brown NMD. The effect of dielectric barrier discharge configuration on the surface modification of aromatic polymers. J Phys D Appl Phys. 2005;38(6):922–9.

    Article  CAS  ADS  Google Scholar 

  32. Borcia G, Anderson CA, Brown NMD. The surface oxidation of selected polymers using an atmospheric pressure air dielectric barrier discharge. Part II. Appl Surf Sci. 2004;225(1–4):186–97.

    Article  CAS  ADS  Google Scholar 

  33. Borcia G, Anderson CA, Brown NMD. The surface oxidation of selected polymers using an atmospheric pressure air dielectric barrier discharge. Part I. Appl Surf Sci. 2004;221(1–4):203–14.

    Article  CAS  ADS  Google Scholar 

  34. Cui NY, Upadhyay DJ, Anderson CA, Meenan BJ, Brown NMD. Surface oxidation of a Melinex 800 PET polymer material modified by an atmospheric dielectric barrier discharge studied using X-ray photoelectron spectroscopy and contact angle measurement. Appl Surf Sci. 2007;253(8):3865–71.

    Article  CAS  ADS  Google Scholar 

  35. Evans MDM, Pavon-Djavid G, Hélary G, Legeais JM, Migonney V. Vitronectin is significant in the adhesion of lens epithelial cells to PMMA polymers. J Biomed Mater Res A. 2004;69A(3):469–76.

    Article  CAS  Google Scholar 

  36. Weber GF, Menko AS. Actin filament organization regulates the induction of lens cell differentiation and survival. Dev Biol. 2006;295(2):714–29.

    Article  CAS  PubMed  Google Scholar 

  37. Yan Q, Perdue N, Sage EH. Differential responses of human lens epithelial cells to intraocular lenses in vitro: hydrophobic acrylic versus PMMA or silicone discs. Graefes Arch Clin Exp Ophthalmol. 2005;243(12):1253–62.

    Article  CAS  PubMed  Google Scholar 

  38. Wiesner S, Legate KR, Fassler R. Integrin–actin interactions. Cell Mol Life Sci. 2005;62(10):1081–99.

    Article  CAS  PubMed  Google Scholar 

  39. Angres B, Barth A, Nelson WJ. Mechanism for transition from initial to stable cell–cell adhesion: kinetic analysis of E-cadherin-mediated adhesion using a quantitative adhesion assay. J Cell Biol. 1996;134(2):549–57.

    Article  CAS  PubMed  Google Scholar 

  40. Miyamoto S, Teramoto H, Coso OA, Gutkind JS, Burbelo PD, Akiyama SK, et al. Integrin function: molecular hierarchies of cytoskeletal and signaling molecules. J Cell Biol. 1995;131(3):791–805.

    Article  CAS  PubMed  Google Scholar 

  41. Nojima Y, Morino N, Mimura T, Hamasaki K, Furuya H, Sakai R, et al. Integrin-mediated cell adhesion promotes tyrosine phosphorylation of p130Cas, a Src homology 3-containing molecule having multiple Src homology 2-binding motifs. J Biol Chem. 1995;270(25):15398–402.

    Article  CAS  PubMed  Google Scholar 

  42. Shattil SJ, Haimovich B, Cunningham M, Lipfert L, Parsons JT, Ginsberg MH, et al. Tyrosine phosphorylation of pp125FAK in platelets requires coordinated signaling through integrin and agonist receptors. J Biol Chem. 1994;269(20):14738–45.

    CAS  PubMed  Google Scholar 

  43. McBeath R, Pirone DM, Nelson CM, Bhadriraju K, Chen CS. Cell shape, cytoskeletal tension, and RhoA regulate stem cell lineage commitment. Dev Cell. 2004;6(4):483–95.

    Article  CAS  PubMed  Google Scholar 

  44. Woods A, Wang G, Beier F. RhoA/ROCK signaling regulates Sox9 expression and actin organization during chondrogenesis. J Biol Chem. 2005;280(12):11626–34.

    Article  CAS  PubMed  Google Scholar 

  45. Andrade JD, Hlady V. Vroman effects, techniques, and philosophies. J Biomater Sci Polym Ed. 1991;2:161–72.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Dr. G. Mahon, Department of Ophthalmology, Queen’s University Belfast, UK for provision of the lens epithelial cell line. R. A. D. acknowledges the University of Ulster for the award of a Vice-chancellors postgraduate studentship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian J. Meenan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

D’Sa, R.A., Burke, G.A. & Meenan, B.J. Lens epithelial cell response to atmospheric pressure plasma modified poly(methylmethacrylate) surfaces. J Mater Sci: Mater Med 21, 1703–1712 (2010). https://doi.org/10.1007/s10856-010-4030-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-010-4030-8

Keywords

Navigation