Skip to main content

Advertisement

Log in

The release of nickel from nickel–titanium (NiTi) is strongly reduced by a sub-micrometer thin layer of calcium phosphate deposited by rf-magnetron sputtering

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Thin calcium phosphate coatings were deposited on NiTi substrates (plates) by rf-magnetron sputtering. The release of nickel upon immersion in water or in saline solution (0.9% NaCl in water) was measured by atomic absorption spectroscopy (AAS) for 42 days. The coating was analyzed before and after immersion by X-ray powder diffraction (XRD), scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDX). After an initial burst during the first 7 days that was observed for all samples, the rate of nickel release decreased 0.4–0.5 ng cm−2 d−1 for a 0.5 μm-thick calcium phosphate coating (deposited at 290 W). This was much less than the release from uncoated NiTi (3.4–4.4 ng cm−2 d−1). Notably, the nickel release rate was not significantly different in pure water and in aqueous saline solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Yahia L. Shape memory implants. Berlin: Springer; 2000.

    Google Scholar 

  2. Brantley WA, Eliades T. Orthodontic materials: scientific and clinical aspects. Stuttgart: Thieme; 2001. p. 310.

    Google Scholar 

  3. Zhao H, van Humbeeck J, de Scheerder I. Surface conditioning of nickel–titanium alloy stents for improving biocompatibility. Surf Eng. 2001;17:451–8.

    Article  CAS  Google Scholar 

  4. Bansiddhi A, Sargeant TD, Stupp SI, Dunand DC. Porous NiTi for bone implants: a review. Acta Biomater. 2008;4:773–82.

    Article  CAS  PubMed  Google Scholar 

  5. Barouk LS. Osteotomies of the great toe. J Foot Surg. 1992;31:388–99.

    CAS  PubMed  Google Scholar 

  6. Krone L, Mentz J, Bram M, Buchkremer HP, Stöver D, Wagner M, et al. The potential of powder metallurgy for the fabrication of biomaterials on the basis of nickel–titanium: a case study with a staple showing shape memory behaviour. Adv Eng Mater. 2005;7:613–9.

    Article  CAS  Google Scholar 

  7. Agarwal P, Srivastava S, Srivastava MM, Prakash S, Ramanamurthy M, Shrivastav R, et al. Studies on leaching of Cr and Ni from stainless steel utensils in certain acids and in some Indian drinks. Sci Total Environ. 1997;199:271–5.

    Article  CAS  PubMed  Google Scholar 

  8. Mas A, Holt D, Webb M. The acute toxicity and teratogenicity of nickel in pregnant rats. Toxicology. 1985;35:47–57.

    Article  CAS  PubMed  Google Scholar 

  9. Wever DJ, Veldhuizen AG, Sanders MM, Schakenraad JM, van Horn JR. Cytotoxic, allergic and genotoxic activity of a nickel–titanium alloy. Biomaterials. 1997;18:1115–20.

    Article  CAS  PubMed  Google Scholar 

  10. Arndt MAB, Scully TAJ, Bourauel C. Nickel ion release from orthodontic NiTi wires under simulation of realistic in situ conditions. J Mater Sci. 2005;40:3659–67.

    Article  CAS  ADS  Google Scholar 

  11. Shabalovskaya S, Anderegg J, van Humbeeck J. Critical overview of Nitinol surfaces and their modifications for medical applications. Acta Biomater. 2008;4:447–67.

    Article  CAS  PubMed  Google Scholar 

  12. Peitsch T, Klocke A, Kahl-Nieke B, Prymak O, Epple M. The release of nickel from orthodontic NiTi wires is strongly increased by dynamic mechanical loading but not constrained by surface nitridation. J Biomed Mater Res. 2007;82A:731–9.

    Article  CAS  Google Scholar 

  13. Flyvholm MA, Nielsen GD, Andersen A. Nickel content of food and estimation of dietary-intake. Z Lebensmittelunters Forsch. 1984;179:427–37.

    Article  CAS  Google Scholar 

  14. Herting G, Wallinder IO, Leygraf C. Factors that influence the release of metals from stainless steels exposed to physiological media. Corrosion Sci. 2006;48:2120–32.

    Article  CAS  Google Scholar 

  15. Reclaru L, Lüthy H, Ziegenhagen R, Eschler PY, Blatter A. Anisotropy of nickel release and corrosion in austenitic stainless steels. Acta Biomater. 2008;4:680–5.

    Article  CAS  PubMed  Google Scholar 

  16. Yeung KWK, Chan RYL, Lam KO, Wu SL, Liu XM, Chung CY, et al. In vitro and in vivo characterization of novel plasma treated nickel titanium shape memory alloy for orthopedic implantation. Surf Coat Technol. 2007;202:1247–51.

    Article  CAS  Google Scholar 

  17. Liu XM, Wu SL, Chu PK, Chung CY, Chu CL, Chan YL, et al. In vitro corrosion behavior of TiN layer produced on orthopedic nickel–titanium shape memory alloy by nitrogen plasma immersion ion implantation using different frequencies. Surf Coat Technol. 2008;202:2463–6.

    Article  CAS  Google Scholar 

  18. Milosev I, Kosec T. Metal ion release and surface composition of the Cu-18Ni-20Zn nickel–silver during 30 days immersion in artificial sweat. Appl Surf Sci. 2007;254:644–52.

    Article  CAS  ADS  Google Scholar 

  19. Colin S, Jolibois H, Chambaudet A, Tireford M. Corrosion stability of nickel in Ni alloys in synthetic sweat. Int Biodeterior Biodegrad. 1994;34:131–41.

    Article  CAS  Google Scholar 

  20. Chan YL, Wu SL, Liu XM, Chu PK, Yeung KWK, Lu WW, et al. Mechanical properties, bioactivity and corrosion resistance of oxygen and sodium plasma treated nickel titanium shape memory alloy. Surf Coat Technol. 2007;202:1308–12.

    Article  CAS  Google Scholar 

  21. Poon RWY, Yeung KWK, Liu XY, Chu PK, Chung CY, Lu WW, et al. Carbon plasma immersion ion implantation of nickel–titanium shape memory alloys. Biomaterials. 2005;26:2265–72.

    Article  CAS  PubMed  Google Scholar 

  22. Wever DJ, Veldhuizen AG, de Vries J, Busscher HJ, Uges DRA, van Horn JR. Electrochemical and surface characterization of a nickel–titanium alloy. Biomaterials. 1998;19:761–9.

    Article  CAS  PubMed  Google Scholar 

  23. Dorozhkin SV, Epple M. Biological and medical significance of calcium phosphates. Angew Chem Int Ed. 2002;41:3130–46.

    Article  CAS  Google Scholar 

  24. Jiang HC, Rong LJ. Effect of hydroxyapatite coating on nickel release of the porous NiTi shape memory alloy fabricated by SHS method. Surf Coat Technol. 2006;201:1017–21.

    Article  CAS  Google Scholar 

  25. Köller M, Esenwein SA, Bogdanski D, Prymak O, Epple M, Muhr G. Regulation of leukocyte adhesion molecules by leukocyte/biomaterial-conditioned media: a study with calcium phosphate-coated and non-coated NiTi-shape memory alloys. Mat-wiss u Werkstofftech. 2006;37:558–62.

    Article  Google Scholar 

  26. Prymak O, Bogdanski D, Esenwein SA, Köller M, Epple M. NiTi shape memory alloys coated with calcium phosphate by plasma-spraying. Chemical and biological properties. Mat-wiss u Werkstofftech. 2004;35:346–51.

    Article  CAS  Google Scholar 

  27. Choi J, Bogdanski D, Köller M, Esenwein SA, Müller D, Muhr G, et al. Calcium phosphate coating on nickel–titanium shape memory alloys. Coating procedure and adherence of leukocytes and platelets. Biomaterials. 2003;24:3689–96.

    Article  CAS  PubMed  Google Scholar 

  28. Xu S, Long J, Sim L, Diong CH, Ostrikov K. RF plasma sputtering deposition of hydroxyapatite bioceramics: synthesis, performance, and biocompatibility. Plasma Proc Polym. 2005;2:373–90.

    Article  CAS  Google Scholar 

  29. Long J, Sim L, Xu S, Ostrikov K. Reactive plasma-aided RF sputtering deposition of hydroxyapatite bio-implant coatings. Chem Vap Deposition. 2007;13:299–306.

    Article  CAS  Google Scholar 

  30. Pichugin VF, Surmenev RA, Shesterikov EV, Ryabtseva MA, Eshenko EV, Tverdokhlebov SI, et al. The preparation of calcium phosphate coatings on titanium and nickel–titanium by rf-magnetron-sputtered deposition: composition, structure and micromechanical properties. Surf Coat Technol. 2008;202:3913–20.

    Article  CAS  Google Scholar 

  31. Ong JL, Lucas LC, Lacefield WR, Rigney ED. Structure, solubility and bond strength of thin calcium phosphate coatings produced by ion beam sputter deposition. Biomaterials. 1992;13:249–54.

    Article  CAS  PubMed  Google Scholar 

  32. Cleries L, Fernandez-Pradas JM, Morenza JL. Bone growth on and resorption of calcium phosphate coatings obtained by pulsed laser deposition. J Biomed Mater Res. 2000;49:43–52.

    Article  CAS  PubMed  Google Scholar 

  33. Gledhill HC, Turner IG, Doyle C. In vitro dissolution behaviour of two morphologically different thermally sprayed hydroxyapatite coatings. Biomaterials. 2001;22:695–700.

    Article  CAS  PubMed  Google Scholar 

  34. Sivaram S. Chemical vapor deposition: thermal and plasma deposition of electronic materials. New York: International Thompson Publishing Inc.; 2000.

    Google Scholar 

Download references

Acknowledgements

The authors thank Mr S. Boukercha, Mrs K. Brauner and Mrs V. Hiltenkamp for experimental assistance with the SEM experiments and with the nickel analyses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. A. Surmenev.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Surmenev, R.A., Ryabtseva, M.A., Shesterikov, E.V. et al. The release of nickel from nickel–titanium (NiTi) is strongly reduced by a sub-micrometer thin layer of calcium phosphate deposited by rf-magnetron sputtering. J Mater Sci: Mater Med 21, 1233–1239 (2010). https://doi.org/10.1007/s10856-010-3989-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-010-3989-5

Keywords

Navigation