Skip to main content
Log in

Tuning anti-microbial activity of poly(4-vinyl 2-hydroxyethyl pyridinium) chloride by anion exchange reactions

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

A series of new bioactive polymers with pendant choline analogous group was prepared by anion exchange reaction direct at the quaternary nitrogen of the polycation. Poly(4-vinyl 2-hydroxyethyl pyridinium) chloride was prepared in situ by simultaneous polymerization and quaternization of 4-vinyl pyridine with 2-chloroethanol that also acts as catalyst. The counter anion (Cl) of the polycation was exchanged by anion exchange reaction with Br, OH, SH, NO3 , BF4 or CF3COO. Evidence of anion exchange was obtained by the characterization of the resultant polymers. The nature of the counter anion has profound effect on their properties including strong anion-dependent anti-microbial activity against bacteria and fungus. Polymer containing OH was observed to be the most potent anti-microbial agent with the lowest minimum inhibitory concentration against both the classes of microbes studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Chauhan GS, Lal H, Mahajan S, Bansal M. Synthesis and characterization of 4-vinyl pyridine-grafted teflon-PFA film for water technologies. J Polym Sci A: Polym Chem. 2000;38:4506–18.

    Article  CAS  Google Scholar 

  2. Chauhan GS, Singh B, Dhiman SK. Functionalization of poly(4-vinyl pyridine) grafted cellulose by quaternization reactions and a study of the properties of post quaternized copolymers. J Appl Polym Sci. 2004;91:2454–64.

    Article  CAS  Google Scholar 

  3. Dueymes C, Scholnberger A, Adamo I, Navarro A-E, Meyer A, Lange M, et al. High-yield solution-phase synthesis of di and trinucleotide blocks assisted by polymer supported reagents. Org Lett. 2005;7:3485–8.

    Article  CAS  PubMed  Google Scholar 

  4. Tang J, Tang H, Sun W, Plancher H, Radosza M, Shen Y. Poly(ionic liquid)s: a new material with enhanced and fast CO2. Chem Commun. 2005;3325–27.

  5. Tang J, Sun W, Tang H, Radosz M, Shen Y. Enhanced CO2 absorption of poly(ionic liquid)s. Macromolecules. 2005;38:2037–9.

    Article  CAS  ADS  Google Scholar 

  6. Xiong Y, Liu QL, Zhang QG, Zhu AM. Synthesis and characterization of cross-linked quaternized poly(vinyl alcohol)/chitosan composite anion exchange membranes for fuel cells. J Power Sources. 2008;183:447–53.

    Article  CAS  Google Scholar 

  7. Chovino C, Frere Y, Gramain P. Single-ion and salt conductor polymer electrolytes based on poly(4-vinylpyridine) quaternized with poly(ethylene oxide) side chains. J Polym Sci A: Polym Chem. 1997;35:2719–28.

    Article  CAS  Google Scholar 

  8. Yoshizawa M, Ogihara W, Ohno H. Novel polymer electrolytes prepared by copolymerization of ionic liquid monomers. Polym Adv Technol. 2002;13:589–94.

    Article  CAS  Google Scholar 

  9. Marcilla R, Sanchez-Paniagua M, Lopez-Ruiz B, Lopez-Cabarcos E, Ochoteco E, Grande H, et al. Synthesis and characterization of new polymeric ionic liquid microgels. J Polym Sci A: Polym Chem. 2006;44:3958–65.

    Article  CAS  Google Scholar 

  10. Ferreyra NF, Coche-Guérente L, Labbé P, Calvo EJ, Solís VM. Electrochemical behavior of nitrate reductase immobilized in self-assembled structures with redox polyviologen. Langmuir. 2003;19:3864–74.

    Article  CAS  Google Scholar 

  11. Yan F, Texter J. Surfactant ionic liquid-based microemulsions for polymerization. Chem Commun. 2006;2696–98.

  12. Yan F, Texter J. Solvent-reversible poration in ionic liquid copolymers. Angew Chem Int Ed. 2007;46:2440–3.

    Article  CAS  Google Scholar 

  13. Sambhy V, MacBride MM, Peterson BR, Sen A. Silver bromide nanoparticle/polymer composites: dual action tunable antimicrobial materials. J Am Chem Soc. 2006;128:9798–808.

    Article  CAS  PubMed  Google Scholar 

  14. Li G, Shen J, Zhu Y. Study of pyridinium-type functional polymers. II. Antibacterial activity of soluble pyridinium-type polymers. J Appl Polym Sci. 1998;67:1761–8.

    Article  CAS  Google Scholar 

  15. Li G, Shen J. A study of pyridinium-type functional polymers. IV. Behavioral features of the antibacterial activity of insoluble pyridinium-type polymers. J Appl Polym Sci. 2000;78:676–78.

    Article  CAS  Google Scholar 

  16. Tiller JC, Lee SB, Lewis K, Klibanov AM. Polymer surfaces derivatized with poly(vinyl-N-hexylpyridinium) kill airborne and waterborne bacteria. Biotechnol Bioeng. 2002;79:465–71.

    Article  CAS  PubMed  Google Scholar 

  17. Haldar J, An D, De Cienfuegos LA, Chen J, Klibanov AM. Polymeric coatings that inactivate both influenza virus and pathogenic bacteria. Proc Natl Acad Sci. 2006;103:17667.

    Article  CAS  PubMed  ADS  Google Scholar 

  18. Allison BC, Applegate BM, Youngblood JP. Hemocompatibility of hydrophilic antimicrobial copolymers of alkylated 4-vinylpyridine. Biomacromolecules. 2007;8:2995–9.

    Article  CAS  PubMed  Google Scholar 

  19. El-Refaie Kenawy A, Worley SD, Broughton R. The chemistry and applications of antimicrobial polymers: state-of-the-art review. Biomacromolecules. 2007;8:1359–84.

    Article  PubMed  Google Scholar 

  20. Kanazawa A, Ikeda T, Endo T. Polymeric phosphonium salts as a novel class of cationic biocides. III. Immobilization of phosphonium salts by surface photografting and antibacterial activity of the surface-treated polymer films. J Polym Sci A: Polym Chem. 1993;31:1467–72.

    Article  CAS  Google Scholar 

  21. Yang H, Pritzker M, Fung SY, Sheng Y, Wang W, Chen P. Anion effect on the nanostructure of a metal ion binding self-assembling peptide. Langmuir. 2006;22:8553–62.

    Article  CAS  PubMed  Google Scholar 

  22. Chovino C, Gramain P. Influence of the conformation on chemical modification of polymers: study of the quaternization of poly(4-vinylpyridine). Macromolecules. 1998;31:7111–4.

    Article  CAS  ADS  Google Scholar 

  23. Marcilla R, Blazquez JA, Rodriguez J, Pomposo JA, Mecerreyes D. Tuning the solubility of polymerized ionic liquids by simple anion-exchange reactions. J Polym Sci A: Polym Chem. 2004;42:208–12.

    Article  CAS  Google Scholar 

  24. Dabur R, Chhillar AK, Yadav V, Kamal PK, Gupta J, Sharma GL. In vitro antifungal activity of 2-(3,4-dimethyl-2,5-dihydro-1H-pyrrol-2-yl)-1-methylethyl pentanoate, a dihydropyrrole derivative. J Med Microbiol. 2005;54:549–52.

    Article  CAS  PubMed  Google Scholar 

  25. Li X-G, Kresse I, Springer J, Nissen J, Yang Y-L. Morphology and gas permselectivity of blend membranes of polyvinylpyridine with ethylcellulose. Morphology and gas permselectivity of blend membranes of polyvinylpyridine with ethylcellulose. Polymer. 2001;42:6859–69.

    Article  CAS  Google Scholar 

  26. Verne E, Miola M, Vitale Brovarone C, Cannas M, Gatti MS, Fucale G, et al. Surface silver-doping of biocompatible glass to induce antibacterial properties. Part I: massive glass. J Mater Sci: Mater Med. 2009;20:733–40.

    Article  CAS  Google Scholar 

  27. Stolte S, Arning J, Bottin-Weber U, Matzke M, Stock F, Thiele K, et al. Anion effects on the cytotoxicity of ionic liquids. Green Chem. 2006;8:621–9.

    Article  CAS  Google Scholar 

  28. Lin J, Qiu S, Lewis K, Klibanov AM. Mechanism of bactericidal and fungicidal activities of textiles covalently modified with alkylated polyethylenimine. Biotechnol Bioeng. 2003;83:168–72.

    Article  CAS  PubMed  Google Scholar 

  29. Sato H, Feix JB. Peptide-membrane interactions, mechanisms of membrane destruction amphipathic alpha-helical anti-microbial peptides. Biochim Biophys Acta. 2006;1758:1245–56.

    Article  CAS  PubMed  Google Scholar 

  30. Chen CZ, Beck-Tan NC, Dhurjati P, Van Dyk TK, LaRossa RA, Cooper SL. Quaternary ammonium functionalized poly(propylene imine) dendrimers as effective antimicrobials: structure-activity studies. Biomacromolecules. 2000;1:473–80.

    Article  CAS  PubMed  Google Scholar 

  31. Necula BS, Fratila-Apachitei LE, Berkani A, Apachitei I, Duszczyk J. Enrichment of anodic MgO layers with Ag nanoparticles for biomedical applications. J Mater Sci: Mater Med. 2009;20:339–45.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ghanshyam S. Chauhan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sharma, S.K., Chauhan, G.S., Gupta, R. et al. Tuning anti-microbial activity of poly(4-vinyl 2-hydroxyethyl pyridinium) chloride by anion exchange reactions. J Mater Sci: Mater Med 21, 717–724 (2010). https://doi.org/10.1007/s10856-009-3932-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-009-3932-9

Keywords

Navigation