Skip to main content

Advertisement

Log in

Bone regeneration potential of a soybean-based filler: experimental study in a rabbit cancellous bone defects

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Autologous and allogenic bone grafts are considered as materials of choice for bone reconstructive surgery, but limited availability, risks of transmittable diseases and inconsistent clinical performances have prompted the development of alternative biomaterials. The present work compares the bone regeneration potential of a soybean based bone filler (SB bone filler) in comparison to a commercial 50:50 poly(d,l lactide–glycolide)-based bone graft (Fisiograft® gel) when implanted into a critical size defect (6-mm diameter, 10-mm length) in rabbit distal femurs. The histomorphometric and microhardness analyses of femoral condyles 4, 8, 16 and 24 weeks after surgery showed that no significant difference was found in the percentage of both bone repair and bone in-growth in the external, medium and inner defect areas. The SB filler-treated defects showed significantly higher outer bone formation and microhardness results at 24 weeks than Fisiograft® gel (P < 0.05). Soybean-based biomaterials clearly promoted bone repair through a mechanism of action that is likely to involve both the scaffolding role of the biomaterial for osteoblasts and the induction of their differentiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Perry CR. Bone repair techniques, bone graft, and bone graft substitutes. Clin Orthop. 1999;360:71–86.

    Article  PubMed  Google Scholar 

  2. Phelps JB, Hubbard GB, Wang X, Agrawal CM. Microstructural heterogeneity and the fracture toughness of bone. J Biomed Mater Res. 2000;51:735–41.

    Article  CAS  PubMed  Google Scholar 

  3. Russell JL, Block JE. Surgical harvesting of bone graft from the ileum: point of view. Med Hypotheses. 2000;55:474–9.

    Article  CAS  PubMed  Google Scholar 

  4. Goldberg VM, Stevenson S. Natural history of autografts and allografts. Clin Orthop. 1987;225:7–16.

    PubMed  Google Scholar 

  5. Becker W, Becker BE, Caffesse R. A comparison of demineralized freeze-dried bone and autologous bone to induce bone formation in human extraction sockets. J Periodontol. 1994;65:1128–33.

    CAS  PubMed  Google Scholar 

  6. Mellonig JT. Decalcified freeze-dried bone allograft as an implant material in human periodontal defects. Int J Periodontics Restorative Dent. 1984;4:41–55.

    Google Scholar 

  7. Trejo PM, Weltman R, Caffesse R. Treatment of intraosseous defects with bioabsorbable barriers alone or in combination with decalcified freeze-dried bone allograft: a randomized clinical trial. J Periodontol. 2000;71:1852–61.

    Article  CAS  PubMed  Google Scholar 

  8. Bowen JA, Mellonig JT, Gray JL, Towle HT. Comparison of decalcified freeze-dried bone allograft and porous particulate hydroxyapatite in human periodontal osseous defects. J Periodontol. 1989;60:647–54.

    CAS  PubMed  Google Scholar 

  9. Salernitano E, Migliaresi C. Composite materials for biomedical applications: a review. J Appl Biomater Biomech. 2003;1:3–18.

    Google Scholar 

  10. Carmagnola D, Adriaens P, Berglundh T. Healing of human extraction sockets filled with Bio-Oss. Clin Oral Implants Res. 2003;14:137–43.

    Article  PubMed  Google Scholar 

  11. LeGeros RZ. Properties of osteoconductive biomaterials: calcium phosphates. Clin Orthop Relat Res. 2002;395:81–98.

    Article  PubMed  Google Scholar 

  12. Specchia N, Pagnotta A, Cappella M, Tampieri A, Greco F. Effect of hydroxyapatite porosity on growth and differentiation of human osteoblast-like cells. J Mater Sci. 2002;37:577–84.

    Article  CAS  Google Scholar 

  13. Ogose A, Hotta T, Kawashima H, Kondo N, Gu W, Kamura T, et al. Comparison of hydroxyapatite and beta tricalcium phosphate as bone substitutes after excision of bone tumors. J Biomed Mater Res B Appl Biomater. 2005;72:94–101.

    Article  PubMed  CAS  Google Scholar 

  14. Kondo N, Ogose A, Tokunaga K, Ito T, Arai K, Kudo N, et al. Bone formation and resorption of highly purified beta-tricalcium phosphate in the rat femoral condyle. Biomaterials. 2005;26:5600–8.

    Article  CAS  PubMed  Google Scholar 

  15. Serino G, Biancu S, Iezzi G, Piattelli A. Ridge preservation following tooth extraction using a polylactide and polyglycolide sponge as space filler: a clinical and histological study in humans. Clin Oral Implants Res. 2003;14:651–8.

    Article  PubMed  Google Scholar 

  16. Barbanti SH, Santos AR Jr, Zavaglia CA, Duek EA. Porous and dense poly(L-lactic acid) and poly(D,L-lactic acid-co-glycolic acid) scaffolds: in vitro degradation in culture medium and osteoblasts culture. J Mater Sci: Mater Med. 2004;15:1315–21.

    Article  CAS  Google Scholar 

  17. Hedberg EL, Kroese-Deutman HC, Shih CK, Crowther RS, Carney DH, Mikos AG, et al. In vivo degradation of porous poly(propylene fumarate)/poly(DL-lactic-co-glycolic acid) composite scaffolds. Biomaterials. 2005;26:4616–23.

    Article  CAS  PubMed  Google Scholar 

  18. Fiorellini JP, Howell TH, Cochran D, Malmquist J, Lilly LC, Spagnoli D, et al. Randomized study evaluating recombinant human bone morphogenetic protein-2 for extraction socket augmentation. J Periodontol. 2005;76:605–13.

    Article  CAS  PubMed  Google Scholar 

  19. Helms MW, Packeisen J, August C, Schittek B, Boecker W, Brandt BH, et al. First evidence supporting a potential role for the BMP/SMAD pathway in the progression of oestrogen receptor-positive breast cancer. J Pathol. 2005;206:366–76.

    Article  CAS  PubMed  Google Scholar 

  20. Middleton E Jr, Kandaswami C, Theoharides TC. The effects of plant flavonoids on mammalian cells: implications for inflammation, heart disease, and cancer. Pharmacol Rev. 2000;52:673–751.

    CAS  PubMed  Google Scholar 

  21. Rickard DJ, Monroe DG, Ruesink TJ, Khosla S, Riggs BL, Spelsberg TC. Phytoestrogen genistein acts as an estrogen agonist on human osteoblastic cells through estrogen receptors alpha and beta. J Cell Biochem. 2003;89:633–46.

    Article  CAS  PubMed  Google Scholar 

  22. Murkies AL, Wilcox G, Davis SR. Clinical review 92: phytoestrogens. J Clin Endocrinol Metab. 1998;83:297–303.

    Article  CAS  PubMed  Google Scholar 

  23. Dobarganes Nodar M, Molero Gomez A, Martinez De La Ossa E. Characterisation and process development of supercritical fluid extraction of soybean oil. Food Sci Technol Int. 2002;8:337–42.

    CAS  Google Scholar 

  24. Panjaitan N, Hettiarachchy N, Ju ZY, Crandall P, Sneller C, Dombek D. Evaluation of genistin and genistein contents in soybean varieties and soy protein concentrate prepared with 3 basic methods. J Food Sci. 2000;65:399–402.

    Article  Google Scholar 

  25. Santin M et al. 2001; Patent No. PCT/GB01/03464.

  26. Morris C, Thorpe J, Ambrosio L, Santin M. The soybean isoflavone genistein induces differentiation of MG63 human osteosarcoma osteoblasts. J Nutr. 2006;136:1166–70.

    CAS  PubMed  Google Scholar 

  27. Santin M, Morris C, Standejn G, Nicolais L, Ambrosio L. A new class of bioactive and biodegradable soybean-based bone fillers. Biomacromolecules. 2007;8:2706–11.

    Article  CAS  PubMed  Google Scholar 

  28. Rimondini L, Nicoli-Aldini N, Fini M, Guzzardella G, Tschon M, Giardino R. In vivo experimental study on bone regeneration in critical bone defects using an injectable biodegradable PLA/PGA copolymer. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2005;99:148–54.

    Article  PubMed  Google Scholar 

  29. Zaffe D, Leghissa GC, Pradelli J, Botticelli AR. Histological study on sinus lift grafting by Fisiograft® and Bio-Oss. J Mater Sci: Mater Med. 2005;16:789–93.

    Article  CAS  Google Scholar 

  30. Bodde EWH, Wolke JGC, Kowalski RSZ, Jansen JA. Bone regeneration of porous b-tricalcium phosphate (ConduitTM TCP) and of biphasic calcium phosphate ceramic (Biosel1) in trabecular defects in sheep. J Biomed Mater Res. 2007;82A:711–22.

    Article  CAS  Google Scholar 

  31. Parfitt AM, Drezner MK, Glorieux FH, Kanis JA, Malluche H, Meunier PJ, et al. Bone histomorphometry: standardization of nomenclature, symbols and units. J Bone Miner Res. 1987;2:595–610.

    Article  CAS  PubMed  ADS  Google Scholar 

  32. Huja SS, Katona TR, Moore BK, Roberts WE. Microhardness and anisotropy of the vital osseous interface and endosseous implants supporting bone. J Orthop Res. 1998;16:54–60.

    Article  CAS  PubMed  Google Scholar 

  33. Huja SS, Katona TR, Roberts WE. Microhardness testing of bone. In: An YH, Draughin RA, editors. Mechanical testing of bone and the bone-implant interface. Boca Raton, FL: CRC Press; 2000. p. 247–56.

    Google Scholar 

  34. Fini M, Motta A, Torricelli P, Giavaresi G, Nicoli Aldini N, Tschon M, et al. The healing of confined critical size cancellous defects in the presence of silk fibroin hydrogel. Biomaterials. 2005;26:3527–36.

    Article  CAS  PubMed  Google Scholar 

  35. Tschon M, Fini M, Giavaresi G, Torricelli P, Rimondini L, Ambrosio L, et al. In vitro and in vivo behaviour of biodegradable and injectable PLA/PGA copolymers related to different matrices. Int J Artif Organs. 2007;30:352–62.

    CAS  PubMed  Google Scholar 

  36. Donati D, Di Bella C, Lucarelli E, Dozza B, Frisoni T, Nicoli-Aldini N, et al. OP-1 application in bone allograft integration: preliminary results in sheep experimental surgery. Injury. 2008;39:S65–72.

    Article  PubMed  Google Scholar 

  37. Lu J, Bhargav D, Wei AQ, Diwan A. Posterolateral intertransverse spinal fusion possible in osteoporotic rats with BMP-7 in a higher dose delivered on a composite carrier. Spine. 2008;33:242–9.

    Article  PubMed  Google Scholar 

  38. McKee MD. Recombinant human bone morphogenic protein-7: applications for clinical trauma. J Orthop Trauma. 2005;19:S26–8.

    Article  PubMed  Google Scholar 

  39. Morgan EF, Mason ZD, Bishop G, Davis AD, Wigner NA, Gerstenfeld LC, Einhorn TA. Combined effects of recombinant human BMP-7 (rhBMP-7) and parathyroid hormone (1-34) in metaphyseal bone healing. Bone. 2008;43(6):1031–8.

    Google Scholar 

  40. Nagai N, Mori K, Satoh Y, Takahashi N, Yunoki S, Tajima K, et al. In vitro growth and differentiated activities of human periodontal ligament fibroblasts cultured on salmon collagen gel. J Biomed Mater Res A. 2007;82:395–402.

    PubMed  Google Scholar 

Download references

Acknowledgements

This work has been supported by a UK South East Proof of Concept grant. The Authors wish to thank: (1) Mr. Keith Smith for his assistance in language supervision; and (2) Claudio Dal Fiume, Paola Chiavelli, Nicola Corrado, Alberto Iannì and Patrizia Nini of the Laboratory of Surgical Preclinical Studies, Rizzoli Orthopaedic Institute (Bologna, Italy) for their technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matteo Santin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Giavaresi, G., Fini, M., Salvage, J. et al. Bone regeneration potential of a soybean-based filler: experimental study in a rabbit cancellous bone defects. J Mater Sci: Mater Med 21, 615–626 (2010). https://doi.org/10.1007/s10856-009-3870-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-009-3870-6

Keywords

Navigation