Skip to main content
Log in

Hybrid structure in PCL-HAp scaffold resulting from biomimetic apatite growth

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Polymer–ceramic composites are favourite candidates when aiming to replace bone tissue. We present here scaffolds made of polycaprolactone-hydroxyapatite (PCL-HAp) composites, and investigate in vitro mineralisation of the scaffolds in SBF after or without a nucleation treatment. In vitro bioactivity is enhanced by HAp incorporation as well as by nucleation treatment, as demonstrated by simulated body fluid (SBF) mineralization. Surprisingly, we obtained a hybrid interconnected organic-inorganic structure, as a result of micropore invasion by biomimetic apatite, which results in a mechanical strengthening of the material after two weeks of immersion in SBF×2. The presented scaffolds, due to their multiple qualities, are expected to be valuable supports for bone tissue engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Ciapetti G, Ambrosio L, Savarino L, Granchi D, Cenni E, Baldini N, et al. Osteoblast growth and function in porous poly ε-caprolactone matrices for bone repair: a preliminary study. Biomaterials. 2003;24:3815–24.

    Article  CAS  PubMed  Google Scholar 

  2. Hasegawa S, Neo M, Tamura J, Fujibayashi S, Takemoto M, Shikinami Y, et al. In vivo evaluation of a porous hydroxyapatite/poly-dl-lactide composite for bone tissue engineering. J Biomed Mater Res A. 2007;81A:930–8.

    Google Scholar 

  3. Shor L, Güçeri S, Wen X, Gandhi M, Sun W. Fabrication of three-dimensional polycaprolactone/hydroxyapatite tissue scaffolds and osteoblast-scaffold interactions in vitro. Biomaterials. 2007;28:5291–7.

    Article  CAS  PubMed  Google Scholar 

  4. Woo KM, Seo J, Zhang R, Ma PX. Suppression of apoptosis by enhanced protein adsorption on polymer/hydroxyapatite composite scaffolds. Biomaterials. 2007;28:2622–30.

    Article  CAS  PubMed  Google Scholar 

  5. Kokubo HK T, Sakka S, Kitsugi T, Yamamuro T. Solutions able to reproduce in vivo surface-structure changes in bioactive glass–ceramic A-W. J Biomed Mat Res. 1990;24:721–34.

    Article  Google Scholar 

  6. Kokubo T, Takadama H. How useful is SBF in predicting in vivo bone bioactivity? Biomaterials. 2006;27:2907–15.

    Article  CAS  PubMed  Google Scholar 

  7. Oliveira AL, Mano JF, Reis RL. Nature-inspired calcium phosphate coatings: present status and novel advances in the science of mimicry. Curr Opin Solid State Mater Sci. 2003;7:309–18.

    Article  CAS  Google Scholar 

  8. Kawashita M, Nakao M, Minoda M, Kim HM, Beppu T, Miyamoto T, et al. Apatite-forming ability of carboxyl group-containing polymer gels in a simulated body fluid. Biomaterials. 2003;24:2477–84.

    Article  CAS  PubMed  Google Scholar 

  9. Kim H-M, Himeno T, Kokubo T, Nakamura T. Process and kinetics of bonelike apatite formation on sintered hydroxyapatite in a simulated body fluid. Biomaterials. 2005;26:4366–73.

    Article  CAS  PubMed  Google Scholar 

  10. Lickorish D, Ramshaw JA, Werkmeister JA, Glattauer V, Howlett CR. Collagen-hydroxyapatite composite prepared by biomimetic process. J Biomed Mater Res A. 2004;68A:19–27.

    Google Scholar 

  11. You C, Miyazaki T, Ishida E, Ashizuka M, Ohtsuki C, Tanihara M. Fabrication of poly(vinyl alcohol)-apatite hybrids through biomimetic process. J Eur Ceram Soc. 2007;27:1585–8.

    Article  CAS  Google Scholar 

  12. Kim H-W, Kim H-E, Salih V. Stimulation of osteoblast responses to biomimetic nanocomposites of gelatin-hydroxyapatite for tissue engineering scaffolds. Biomaterials. 2005;26:5221–30.

    Article  CAS  PubMed  Google Scholar 

  13. Chen Y, Mak AFT, Wang M, Li J, Wong MS. PLLA scaffolds with biomimetic apatite coating and biomimetic apatite/collagen composite coating to enhance osteoblast-like cells attachment and activity. Surf Coat Technol. 2006;201:575–80.

    Article  CAS  Google Scholar 

  14. Azevedo HS, Leonor IB, Alves CM, Reis RL. Incorporation of proteins and enzymes at different stages of the preparation of calcium phosphate coatings on a degradable substrate by a biomimetic methodology. Mater Sci Eng C. 2005;25:169–79.

    Article  Google Scholar 

  15. Cüneyt Tas A. Synthesis of biomimetic Ca-hydroxyapatite powders at 37°C in synthetic body fluids. Biomaterials. 2000;21:1429–38.

    Article  Google Scholar 

  16. Landi E, Tampieri A, Celotti G, Langenati R, Sandri M, Sprio S. Nucleation of biomimetic apatite in synthetic body fluids: dense and porous scaffold development. Biomaterials. 2005;26:2835–45.

    Article  CAS  PubMed  Google Scholar 

  17. Kim SS, Park MS, Gwak SJ, Choi CY, Kim BS. Accelerated bonelike apatite growth on porous polymer/ceramic composite scaffolds in vitro. Tissue Eng. 2006;12:2997–3006.

    Article  CAS  PubMed  Google Scholar 

  18. Stoch A, Jastrzebski W, Brozek A, Stoch J, Szaraniec J, Trybalska B, et al. FTIR absorption-reflection study of biomimetic growth of phosphates on titanium implants. J Mol Struct. 2000;555:375–82.

    Article  CAS  ADS  Google Scholar 

  19. Müller L, Müller FA. Preparation of SBF with different content and its influence on the composition of biomimetic apatites. Acta Biomater. 2006;2:181–9.

    Article  PubMed  Google Scholar 

  20. Müller L, Conforto E, Caillard D, Müller FA. Biomimetic apatite coatings—carbonate substitution and preferred growth orientation. Biomol Eng. 2007;24:462–6.

    Article  PubMed  Google Scholar 

  21. Oyane A, Kim HM, Furuya T, Kokubo T, Miyazaki T, Nakamura T. Preparation and assessment of revised simulated body fluids. J Biomed Mater Res A. 2003;65A:188–95.

    Google Scholar 

  22. Chou Y-F, Huang W, Dunn JCY, Miller TA, Wu BM. The effect of biomimetic apatite structure on osteoblast viability, proliferation, and gene expression. Biomaterials. 2005;26:285–95.

    Article  CAS  PubMed  Google Scholar 

  23. Chim H, Hutmacher DW, Chou AM, Oliveira AL, Reis RL, Lim TC, et al. A comparative analysis of scaffold material modifications for load-bearing applications in bone tissue engineering. Int J Oral Maxillofac Surg. 2006;35:928–34.

    Article  CAS  PubMed  Google Scholar 

  24. Murphy WL, Hsiong S, Richardson TP, Simmons CA, Mooney DJ. Effects of a bone-like mineral film on phenotype of adult human mesenchymal stem cells in vitro. Biomaterials. 2005;26:303–10.

    Article  CAS  PubMed  Google Scholar 

  25. Oyane A, Uchida M, Choong C, Triffitt J, Jones J, Ito A. Simple surface modification of polycaprolactone for apatite deposition from simulated body fluid. Biomaterials. 2005;26:2407–13.

    Article  CAS  PubMed  Google Scholar 

  26. Ho M-H, Kuo P-Y, Hsieh H-J, Hsien T-Y, Hou L-T, Lai J-Y, et al. Preparation of porous scaffolds by using freeze-extraction and freeze-gelation methods. Biomaterials. 2004;25:129–38.

    Article  CAS  PubMed  Google Scholar 

  27. Hayashi T, Nakayama K, Mochizuki M, Masuda T. Studies on Biodegradable Poly(hexano-6-lactone fibers). Part 3. Enzymatic degradation in vitro. Pure Appl Chem. 2002;74:869–80.

    Article  CAS  Google Scholar 

  28. Lebourg M, Antón JS, Ribelles JLG. Porous membranes of PLLA-PCL blend for tissue engineering applications. Eur Polym J. 2008;44:2207–18.

    Article  CAS  Google Scholar 

  29. Adams CS, Mansfield K, Perlot RL, Shapiro IM. Matrix regulation of skeletal cell apoptosis. Role of calcium and phosphate ions. J Biol Chem. 2001;276:20316–22.

    Article  CAS  PubMed  Google Scholar 

  30. Chou L, Marek B, Wagner WR. Effects of hydroxylapatite coating crystallinity on biosolubility, cell attachment efficiency and proliferation in vitro. Biomaterials. 1999;20:977–85.

    Article  CAS  PubMed  Google Scholar 

  31. Bodhak S, Bose S, Bandyopadhyay A. Role of surface charge and wettability on early stage mineralization and bone cell–materials interactions of polarized hydroxyapatite. Acta Biomater. 2009;5:2178–88.

    Google Scholar 

  32. Bohner M, Lemaitre J. Can bioactivity be tested in vitro with SBF solution? Biomaterials. 2009;30:2175–9.

    Article  CAS  PubMed  Google Scholar 

  33. Koutsopoulos S. Synthesis and characterization of hydroxyapatite crystals: a review study on the analytical methods. J Biomed Mater Res. 2002;62:600–12.

    Article  CAS  PubMed  Google Scholar 

  34. Habibovic P, Sees TM, van den Doel MA, van Blitterswijk CA, de Groot K. Osteoinduction by biomaterials—physicochemical and structural influences. J Biomed Mater Res A. 2006;77A:747–62.

    Google Scholar 

  35. Habibovic P, Yuan H, van der Valk CM, Meijer G, van Blitterswijk CA, de Groot K. 3D microenvironment as essential element for osteoinduction by biomaterials. Biomaterials. 2005;26:3565–75.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The support of the Spanish Ministry of Science through projects no. MAT2007-66759-C03-01 and MAT2007-66759-C03-02 (including the FEDER financial support), and Consellería Valenciana de Sanidad through project AP-111/08 is acknowledged. The authors acknowledge Dr. Mayelin Guerra for kindly providing them with hydroxyapatite nanoparticles for this study. SEM was performed under the technical guide of the Microscopy Service at the Universidad Politécnica de Valencia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Lebourg.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lebourg, M., Antón, J.S. & Ribelles, J.L.G. Hybrid structure in PCL-HAp scaffold resulting from biomimetic apatite growth. J Mater Sci: Mater Med 21, 33–44 (2010). https://doi.org/10.1007/s10856-009-3838-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-009-3838-6

Keywords

Navigation